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Abstract

Using daily observations of the index and stock market returns for the Peruvian case from January
3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability, estimates
maximum quantiles and tail probabilities of this distribution, and models the extremes through
a maximum threshold. This is used to obtain the better measurements of the Value at Risk
(VaR) and the Expected Short-Fall (ES) at 95% and 99%. One of the results on calculating the
maximum annual block of the negative stock market returns is the observation that the largest
negative stock market return (daily) is 12.44% in 2011. The shape parameter is equal to -0.020
and 0.268 for the annual and quarterly block, respectively. Then, in the first case we have that
the non-degenerate distribution function is Gumbel-type. In the other case, we have a thick-tailed
distribution (Fréchet). Estimated values of the VaR and the ES are higher using the Generalized
Pareto Distribution (GPD) in comparison with the Normal distribution and the differences at
99.0% are notable. Finally, the non-parametric estimation of the Hill tail-index and the quantile
for negative stock market returns shows quite instability.

JEL Classification: C22, C58, G32.

Keywords: Extreme Value Theory, Value-at-Risk (VaR), Expected Short-Fall (ES), Generalized
Pareto Distribution (GPD), Distributions Gumbel, Exponential, Fréchet, Extreme Loss, Peruvian
Stock Market.

Resumen

Utilizando observaciones diarias de los indices y retornos del mercado de valores Peruano desde
Enero 3, 1990 hasta Mayo 31, 2013, se modela la distribucién de probabilidad de pérdida diaria,
se estiman los cuantiles maximos y las probabilidades de la cola de esta distribucién as{ como
también se modelan los extremos a través de un umbral méximo. Esto se utiliza para obtener
mejores mediciones del Valor en Riesgo (VaR) y el Ezpected Short-Fall (ES) a 95% y 99%. Uno
de los resultados en el cdlculo del bloque méximo anual de los retornos negativos del mercado
de valores es la observacién de que el mayor retorno negativo del mercado de valores (diario) es
12.44% en 2011. El pardmetro de forma es igual a -0.020 y 0.268 para los bloques anual y trimestral,
respectivamente. En el primer caso tenemos que la funcién de distribucién no degenerada es de
tipo Gumbel. En el otro caso, tenemos una distribucién de espesor de cola de tipo Fréchet. Las
estimaciones del VaR y el ES son mds altos mediante la distribucién generalizada de Pareto (GPD)
en comparacion con la distribucién Normal y las diferencias al 99.0% son notables. Por tltimo, la
estimacién no paramétrica de la cola usando el indice de Hill y el cuantil de rentabilidad negativa
del mercado de valores muestra gran inestabilidad.

Classificacién JEL: C22, C58, G32.

Palabras Claves: Teoria de Valores Extremos, Valor en Riesgo (VaR), Expected Short-Fall (ES),
Distribucién de Pareto Generalizada (GPD), Distribuciones Gumbel, Exponencial, Fréchet, Pérdi-
das Extremas, Mercado Bursatil Peruano.



Extreme Value Theory: An Application to the Peruvian Stock
Market Returns?

Alfredo Calderén Vela Gabriel Rodriguez?
Pontificia Universidad Catdlica del Peru Pontificia Universidad Catdlica del Peru

1 Introduction

As part of the Peruvian economy’s good performance in recent years, the financial sector has
played a significant role in terms of the objective of economic growth and capital accumulation.
Nonetheless, the world financial crisis that began in the final quarter 2007 affected the Peruvian
capitals market and brought about a sharp fall in the General Index of the Lima Stock Exchange
(IGBVL) of 59.78%, and in the Selective Index (ISBVL) of 59.73%. This event illustrates that
big losses occur as a result of extreme movements in the markets, and hence that financial risk is
related to the possible losses that investors can suffer in these markets; see Jorian (2001).

In general, the series of stock market returns have heavy-tailed distribution, due to which,
unlike traditional distributions, the distribution of stock market returns possess greater probabilistic
density on the tails. The above has, as a consequence, greater probability of extreme losses and it
is necessary to analyze the tails of the distribution through the use of methodologies in the context
of the Extreme Values Theory (EVT). We seek to capture in the best way possible the sudden
movements of the performances of financial assets associated with the tails of the distribution, and
thus allow better measurement of the behavior of financial asset performance®. The recent financial
crisis put in evidence the existence of multiple faults in the form of risk modeling, and this in turn
prompted notable criticism of the different mathematical models and traditional statistics employed
by companies in attempts to predict the risk. In 1993, the members of the Bank for International
Settlements (BIS) gathered in Basel and amended the Basel Accords to require that banks and
other financial institutions keep sufficient capital in reserve to cover ten days of potential losses
based on the 10-day Value at Risk (VaR)?.

The estimation of the VaR by way of traditional models is not entirely adequate, because many
of the techniques employed are based on the assumption that the financial returns follow a Normal
distribution. In this context, the measurement of risk through traditional measures occasions large
losses to market participants because of the unexpected falls in financial market returns. Another

!This paper is drawn from the Thesis of Alfredo Calderén Vela at the Master Program of Economics, Graduate
School, Department of Economics, Pontificia Universidad Catélica del Peri. We thank useful comments of Paul
Castillo (Central Reserve Bank of Peru).

2 Address for Correspondence: Gabriel Rodriguez, Department of Economics, Pontificia Universidad Catélica del
Pertd, Av. Universitaria 1801, Lima 32, Lima, Pertd, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail
Address: gabriel.rodriguez@pucp.edu.pe.

$Important texts include Embrechts et al. (1997), and Coles (2001). Other references applied to finances and the
financial risk management are Diebold et al. (1998), Danielsson and De Vries (1997), McNeil (1998a, 1998b), and
Longin (2000).

*Danielsson et al. (2001) hold that the Committee on Banking Supervision was wrong to consider the risk to be
endogenous, and affirm that the VaR can destabilize an economy and generate breaks would not otherwise occur. In
this way, the authors leave open the possibility that traditional financial models employed to measure and diagnose
the risk have a certain degree of inconsistence, primarily because certain assumptions of these models are incapable of
capturing the behavior of the indices that are used to measure risk. In particular, it is found that traditional models
have a poor performance against sudden movements of these indices in a context of crisis.



measure of risk is that proposed by Artzner et al. (1999), called expected shortfall, or expected loss
(Expected Shortfall - ES), which is an expectation of loss conditioned to exceeding the indicated
VaR level. One of the objectives of financial risk management is the exact calculation of the
magnitudes and probabilities of big financial losses that are produced at times of financial crisis.
It is thus of relevance to model the probability of loss distribution and estimate the maximum
quantiles and tail probabilities associated with this distribution; see Zivot and Wang (2006).

The modern EVT started with von Bortkiewicz (1922). Thereafter, Fisher and Tippett (1928)
laid the foundations of the asymptotic theory of the distributions of extreme values. Hill (1975)
introduces a general approach for inference around the behavior of the tail of a distribution, while
Danielsson and De Vries (1997) believe that a specific estimation of the form of the tail of foreign
currency returns is of vital importance for adequate risk assessment.

On the other hand, Embrechts et al. (1997) present the probabilistic models and techniques
with the aim of mathematically describing extreme events in the unidimensional case. McNeil
(1998a) reduces data from the S&P500 index to 28 annual maximums corresponding to the period
1960-1987, and adjusts them to a Fréchet distribution. In this way, they calculate the estimations
of various levels of returns, as well as the confidence interval at 95% for a 50-year level of return -
which on average must be exceeded in just one year- every fifty years. The most probable calculated
value is 7.4, but there is a great deal of uncertainty in the analysis as the confidence interval is
approximately [4.9, 24].

Moreover, McNeil (1998b) considers the estimation of quantiles in the marginal distribution
tail in the series of financial returns, utilizing statistical methods of extreme values based on the
distribution limit of maximum blocks of stationary time series. The author proposes a simple
methodology for the quantification of the worst possible scenarios, with losses of ten or twenty
years.

Diebold et al. (1998) hold that the literature on the EVT is more accurate for the exact
estimation of the extreme quantiles and tail probabilities of the financial assets®. McNeil (1999)
shows a general vision of the EVT in the management of risks as a method for modeling and
measuring extreme risks, concentrating on the peaks through a threshold. McNeil and Frey (2000)
propose a method for estimating the VaR and relate it to the risk measurements that describe the
conditional distribution tail of a series of heteroskedastic financial yields.

Moreover, Longin (2000) present an application of the EVT to calculate the VaR of a position in
the market. For Embrechts et al. (2002), the modern risk management requires an understanding
of stochastic dependence. The authors conduct a discussion on joint distributions and the use of
copulas as descriptions of dependency among random variables.

Tsay (2002) applies the EVT to the logarithm of profitability of IBM shares for the period
from July 3, 1962 to December 31, 1998 and finds that the range of fluctuation of the daily yields,
excluding the crisis of 1987, fluctuates between 0.5% and 13%. He also estimates the Hill estimator
and finds stable results for a minimum and maximum value of the biggest n-th observation of
this estimator. Tsay (2002) performs the estimation for different sample sizes (monthly, quarterly,
weekly, and yearly) and concludes that the estimation of the scale and location parameters increase
in modulus when the sample size increases. The shape parameter is stable for extreme negatives
values when the sample size is greater than 62 and is approximately equal to a -0.33. The estimator
of the shape parameter is small, significantly different to zero, and less stable for positive extremes.

’Diebold et al. (1998) demonstrate the existence of a trade off between the bias error and the variance when the
largest n-th observation increases in Hill’s tail index estimator (1975).



The result for the annual sample size has high variability when the number of subperiods is relatively
small.

According to Delfiner and Gutiérrez (2002), the returns in developing markets are characterized
by being more leptokurtic compared to the returns of more developed economies; see also Humala
and Rodriguez (2013) for stylized facts in the Peruvian stock market. The authors estimate an
autoregressive AR-GARCH model of stochastic volatility, and then apply the EVT to the distri-
bution tail of standardized residuals of the model by estimating a generalized Pareto distribution
with a view to obtaining a better estimation of the probability when extreme losses are presented.

Finally, McNeil et al. (2005) provide two main types of models of extreme values. The most
traditional models are maximum block, which are models for the biggest ordered observations of
big samples of identically distributed observations. The other group of models are for threshold
exceedances and apply to all big observations that exceed a high level. They are generally considered
very useful for practical applications, given their more efficient use (often limited) of the data on
the extreme results.

Using daily observations of the index and stock market returns for the Peruvian case from
January 3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability,
estimates maximum quantiles and tail probabilities of this distribution, and models the extremes
through a maximum threshold. This is used to obtain the best measurements of the Value at Risk
(VaR) and the Expected Short-Fall (ES) at 95% and 99%. One of the results on calculating the
maximum annual block of the negative stock market returns is the observation that the largest
negative stock market return (daily) is 12.44% in 2011. The shape parameter is equal to -0.020
and 0.268 for the annual and quarterly block, respectively. Then, in the first case we have that
the non-degenerate distribution function is Gumbel-type. In the other case, we have a thick-tailed
distribution (Fréchet). Estimations of the VaR and the ES are higher using the Generalized Pareto
Distribution (GPD) in comparison with the Normal distribution and the differences at 99.0% are
notable. Finally, the non-parametric estimation of the Hill tail-index and the quantile for negative
stock market returns shows quite instability.

This paper is structured as follows: Section 2 describes the main definitions associated with
EVT, as well as the method for estimating the main measurements of risk, the VaR and the ES.
Section 3 presents the results, utilizing a sample of daily returns of the Peruvian stock market.
Section 4 presents the main conclusions.

2 Methodology

In this Section, we closely follow and employ the notation of Zivot and Wang (2006). The EVT
provides the statistical tools to model the unknown accumulated distribution function of the random
variables that represent the risk or losses, especially in those situations where large losses are
produced. Let {Xi,X2,..., X} be random variables i.i.d. that symbolize the risk or expected
losses, which have an unknown accumulated distribution function F'(z) = Pr[X; < z]. M, =
max[X1, Xa, ..., X,,] is specified as the worst loss in a sample of losses of n in size. Of the assumption
i.i.d., the cumulative distribution function of M, is: Pr[M, < z] = Pr[Xj < z,Xs < z,..., X, <
n

x) = H F(x) = F™(x). It is assumed that the function F™ is unknown, and, moreover, it is known
=1

that the function of empirical distribution is not a good approximation of F"(x). According to



the Fisher-Tippett Theorem (1928)%, an asymptotic approximation is obtained for F™ based on
the standardization of the maximum value; that is, Z, = M’(;izun where it is found that o, > 0
and pu, as measurements of scale and position, respectively. In this way, for Fisher and Tippett
(1928) the maximum standardized value converges to a distribution function of generalized extreme

exp[—(1 4 £2)~1/¢], para 0, 14+&2>0
value (GEV), defined as: H¢(z) = xp[~(1+£2)7, para £ # 5 where ¢

exp|— exp(—z)], para £ = 0, —00 <z <
is denominated the shape parameter and determines the behavior of the tail of H¢(.)7. This
distribution is not degenerated and is generalized in the sense that the parametric shape summarizes
three types of known distributions. Moreover, if £ = 0, H is a Gumbel distribution; if £ > 0, H is
a Fréchet distribution; if £ < 0, H is a Weibull distribution.

The parameter shape & is associated with the behavior of the tail of the distribution F' and
decays exponentially for a function of power 1 — F(z) = z~Y¢L(x) where L(z) changes slowly.
The GEV distribution is not changed for the transformations of location and scale: H¢(z) =
H¢(*2F) = He o (x). For a large size of n, the Fisher-Tippett Theorem (1928) can be interpreted
as follows: Pr[Z, < z] = Pr[M’;i;% < z] = He¢(z). Assuming v = opz + p,, then: Pr[M, <
x] ~ Hg,“,g(m;: n) = He 0, (x). This expression is useful for performing inference related to the
maximum loss M,. The expression depends on the parameter of £ in form and the standardized
constants o, and p,,, which are estimated for maximum likelihood.

To perform the estimation of maximum likelihood, there is supposed to be a set of identically
distributed losses from a sample of size T represented for {Xi, Xs,..., X7} that have an accumu-
lated density function F'. A sub-sample method is utilized to form the likelihood function for the
parameters &, oy, and p,, from the GEV distribution for M,,. In this way, the sample is divided into

m non-overlapping blocks of equal size n = T'/m, with which we have [ X1, ..., Xp| Xpn41, ..., Xon|...|

X(m_l)nH, woey Xmn] and where MT(Lj) is defined as the maximum value of X; in the block j =

1,---,m. The likelihood function for the parameters &, o, and pu, of the GEV distribution is

constructed from the maximum block sample of {Mr(bl) - M,(Lm)} The likelihood log function as-
suming observations i.i.d. of the GEV distribution when ¢ # 0 is log(u, 0,¢) = —mlog(o) — (1 +

%) S logll + 5(%)] - >+ E(%)]*l/g with the restriction that 1 + 5(%) > 0.
When ¢ = 0, we have a Weibull distribution®.

It is important to discuss the limit distribution of extremes on high thresholds and the gener-
alized Pareto distribution (GPD). When there is a succession of random variables { X1, Xo, ..., X, }
i.i.d. associated with an unknown function of distribution F'(z) = Pr[X; < z], the extreme values
are defined as the X; values that exceed the high threshold «, so the variable X — k represents the
excesses on this threshold. The distribution of excesses on the threshold x are defined as conditional
probability: Fy(y) = Pr[X — k < y|X > k] = %ﬁlg(”) for y > 0. This is interpreted as the
probability that a loss exceeds the threshold x for a value that is equal to or less than y, given
that the threshold of x has been exceeded. For M, = max{Xj, Xo,..., X,,}, defined as the worst

loss in a sample of n-sized losses, the distribution function F' satisfies the Fisher-Tippett Theorem

This Theorem is anolagous to the Central Limit Theorem for extreme values.

"The previous expression is continuous in the parameter of form &.

8The distribution in the domain of attaction of the Gumbel-type distribution are thin-tailed distributions where
practically all moments exist. If they are Fréchet-type, they include fat-tailed distributions such as Pareto, Cauchy,
t-Student, among others. Not all moments exist for these distributions.



(1928), and for a sufficiently large x there is a positive function S(k); thus, the surplus distribution
1= [1+€&y/B(r)] 7V for €0, B(k) >0

1 — expl—y/B(x)] for £ =0, B(x) >0
defined for y > 0 when £ > 0 and 0 < y < —f(k) when £ < 0. For a sufficiently high threshold & it
is found that Fy;(y) =~ G¢ g(x)(y) for a wide range of loss functions F'(.). To apply this result, the
value of the threshold must be specified and the estimates of £ and (k) can be estimated.

There is a close connection between the GEV limit distribution for maximum blocks and the
GPD for excesses with respect to the threshold. For a given value of k, the parameters &, 1 and o
of the GEV distribution determine the parameters £ and (k). It is clear that the shape parameter
& of the GEV distribution is the same parameter £ in the GPD and is independent of the threshold
value k. In consequence, if £ > 0, the function F' is Fréchet-type and the expression G g(y) (y) is
denominated classic Pareto distribution; when § = 0, the function F' is Gumbel-type and G¢ (. ()
is of exponential distribution. Finally, it is found that 0 < y < —f(k)/§ when £ < 0, so the function
F is Weibull-type and G¢ g(.)(y) is the type II Pareto distribution. The parameter £ is the shape or
tail-index parameter and is associated with the rate of decay of the tail of the distribution, and the
decreasing parameter 3 is the shape parameter and is associated with the position of the threshold

¢
H.‘)

is approximated through the GPD: G¢ g(.)(y) =

Now, assuming that the parameter of form is £ < 1, then the mean excess function above the
threshold ko will be E[X — ko|X > ko] = B 1(52) for any xk > kg, and it is found that the excess
function of the mean e(k) = E[X — k| X > k] = %(;_m) Analogously, for any value of y > 0:

e(ko+vy) = E[X — (ko+y)|X > kro+y] = B(ﬁof)ggy Therefore, to graphically deduce the threshold
value for the GPD, we get the excess function of the empirical mean: ey, (k) = i S lwey — Kl
where ;) (1 = 1,2,...,n,) are the values of z; such that z; > k. With the previous expression,
a Figure of e, (k) is constructed with the mean excess on the vertical axis. This Figure can be
interpreted as follows: if the slope is rising, it indicates thick tail behavior, but if there is a
downward trend, this shows thin tail behavior in the distribution; finally, if the slope of the line is
equal to zero, the behavior of the tail is exponential. If the line is straight and has a positive slope
located above the threshold, it is a Pareto-type sample of behavior in the tail.

For the values of the maximum losses that exceed the threshold; that is, when x; > k, the
threshold excess is defined as y; = z(;y — & for ¢« = 1,...,k, in which the values of the z1,....,z,
have been denoted as z(;, ...., T(). When the threshold value is sufficiently large, then the sample
{y1,...,yx} can be expressed within a likelihood that is based on the unknown parameters { and
B(k); that is, a random sample of a GPD.

When § # 0, the log likelihood function of G g(.)(y) has the following form: log[3(x)] =

—klogl[B(k)]— [1+%] Zle log[1+ g(f'ﬁ)] where y; > 0 when ¢ > 0 and 0 < y; < —f(k)/€ when £ < 0.
If the parameter of form is & = 0, then the log likelihood function is: log[3(k)] = —klog[B(k)] —
B(r)~1 Zle yi. To estimate the tails of the loss distribution for F'(x), and where x > k, is utilized
F(z) = [1 — F(r)]G¢ g (y) + F(r). The previous expression is fulfilled for a sufficiently large

threshold and in which F.(y) ~ G¢ g(x) (y).19

°For £ > 0 (the most relevant case for risk administration purposes) it can be shown that E[Xk} = oo for
k>a=1/¢ If € = 0.5, E[X?] = oo and the distribution of losses X does not have finite variance. Equally, if ¢ = 1,
then F[X] = oco.

107t is assumed that z = k + .



There are two common risk measurements: Value at Risk (VaR) and Expected Shortfall (ES).
The VaR is the largest quantile of the distribution of loss; that is, VaR, = F~1(g).!' For a given

probability ¢ > F(k), it is found that VaR =K+ 5(5 )[ (1— q)* 1]. The ES is the expected size

loss, given that the VaR, is exceeded: ES;, = E[X|X > VaR,]. This equation is related to the
VaR, in accordance with ES; = VaR, + E[X — VaR4|X > VaR,], where the second term is the
mean of excess of the distribution Fyqr, (y) on a threshold VaR,. The approximation of the GPD
(due to the translation property) to Fyqr,(y) has the shape parameter { and the scale parameter

B(k) +¢&[VaR, — k] : E[X —VaRy|X > VaR,] = M‘W provided that & > 1. Moreover,

it is found that the GPD approximates qu = ‘;a}zq + B(r) ;“.12 It is also possible to perform

the non-parametric estimation of the shape £ or tail-index parameter a = 1/¢ of the distributions
He¢(z)and G g (y) utilizing Hill’s method (1975), in which £ > 0 (a > 0), is generated by the
same thick-tailed distributions in the domain of attractions of a Fréchet GEV. Considering a sample
of losses { X1, Xa, ..., X7}, the statistical order is defined as Xy = X > ... 2 X(7) for a positive

whole k, and the Hill estimator of £ is defined as ZHill(k) = %Z?Zl[log X(j) — log X(1y]. The Hill

estimator of a is aT(k) = EH"}l(k)‘l?’

3 Empirical Evidence

Figure 1 shows the series for the closing prices of the General Index of the Lima Stock Exchange
(IGBVL)!. The series is of daily frequency and covers the period January 3, 1990 to May 30, 2013.
The returns are defined as r; = log] Pil]’ which are shown in Figure 2. Empirically, the returns
display certain properties as marginal thick-tailed distributions, nonexistence of correlation, and
dependency across these; though they are highly correlated if it concerns the squared results or
their absolute value; see Humala and Rodriguez (2013) for a more detailed description about the
stylized facts.

By way of motivation, the Figure 3 shows the GEV accumulative distribution function for the
distribution function He(.), which adopts the Fréchet, Weibull and Gumbel forms of distribution
when the shape parameter £ = 0.5, £ = —0.5 and £ = 0, respectively, and for general values of z,
the parameter of position of 1 and the parameter of scale o. In this particular case, the Fréchet
distribution is defined for z > —2 and the Weibull distribution is only defined for z < 2. The Figure
4 shows the GEV probability density function He(.) for the non-degenerate Fréchet, Weibull and
Gumbell distribution functions when the shape parameter has values of ¢ = 0.5, £ = —0.5and £ =0
respectively. The Fréchet and Weibull distributions are defined for z > —2 and z < 2, respectively.

YIf it is assumed that X ~ N(p, 0?), then VaRo.99 = pt + 0qo.99-
21 X ~ Ny, 02)7 it is found that FSp.99 = p + o ¢(Z)

~Hill
31t can be scen that if F' is located in the domain of attraction of a GEV distribution, then ¢ ~ (k) converges in

~Hill
probability to £ when k£ = oo and % = 0, and that £ (k) is Normally asymptotically distributed with asymptotic

~Hill .
variance: avarl( (k)] = 5 . Via the delta method, a"" (k) is Normally asymptotically distributed with asymptotic

variance avar[a™" (k)] = T'

""The closing prices of the General Index of the Lima Stock Exchange are taken into account from Monday until
the closure price on Friday. Moreover, it should be recalled that holiday days are not considered, and more generally
the days on which the market was closed.



The Figure 5 shows the GEV density function for negative stock market returns. The horizontal
axis represents the standardized value Z,, of the maximum value of the block M, with respect to
the measurements of scale and position. The vertical axis shows the probability associated with
the GEV density function. It is observed that this distribution does not have the form of a known
distribution and the maximum probability shows positive asymmetry.

The Quantile-p of a distribution function G is denominated to the value X, such that G(p) = Xp;
that is, to the value of X, that leaves the percentile p of probability to its left. If a distribution
function G is continuous and thus strictly growing, the quantile function is the inverse of the
distribution function G and is usually denoted as G~!. The Figure 6 shows the qq-plot, taking the
Normal distribution as theoretical distribution to contrast it with the distribution of stock market
returns. It is observed that a straight line close to zero is not observed (approximately), and so it
is concluded that the distribution of the variable is not the same as the comparison distribution,
showing evidence that the distribution of negative stock market returns is unknown.

Subsequently, the annual maximum block of the negative stock market returns is calculated.
The Figure 7 shows four representations for this annual maximum block. In the upper left corner
is the largest negative return of the period analyzed, which reaches 12.44% in 2011. The upper
right extreme of Figure 7 shows the histogram where the horizontal axis represents the annual
maximum blocks. In the lower left extreme, the qg-plot is shown, contrasting again the distri-
bution of stock market returns for the period of analysis. In the vertical axis, the quantiles of
the referential theoretical distribution are represented (Gumbel distribution, Hp), which satisfies
Hy ' (p) = —log[—log(p)] and the horizontal axis represents the empirical quantiles for the annual
maximum blocks of the distribution of stock market returns. It is observed that a straight line close
to the centre of this Figure is approximately obtained, which suggests that the distribution of the
variable of real data (empirical distribution) is the same as the distribution of comparison (Gumbel
distribution). The lower right extreme shows the development of the records (new maximum) for
the negative stock market returns, together with the expected number of returns for the data i.i.d..
In this Figure, it is observed that the data was not within the interval of trust (dotted lines), due
to which it can be concluded that the data is not consistent with the behavior ¢.i.d.

Similarly to the Figure in the lower left extreme of Figure 7, Figure 8 shows the ¢g¢-plot, using as
referential distribution the Gumbel distribution Hy, and unlike Figure 7, the horizontal axis repre-
sents the standardization of maximum value Z,. As shown previously for the Gumbel distribution,
the quantiles satisfy H 1(p) = —log[—1log(p)] and the points of the quantiles correspond to the
standardization of the maximum value Z, and indicate a GEV distribution with £ = 0.

Then, the entire annual value of the number of observations in each maximum block is deter-
mined for M,Sl) @ = 1,...,m for the stock market returns, with m = 24. The shape parameter §
is statistically insignificant (¢ = —0.020, tg = —0.126) and so the value of this parameter is equal
to zero (£ = 0). Moreover, the asymptotic interval at 95% of confidence for £ is [—0.337,0.2968]
and indicates the considerable uncertainty related to the value of £. This result determines the tail
behavior of the GEV distribution function of stock market returns, and it is concluded that the
non-degenerate distribution function is Gumbel-type. The shape and scale parameters (standard-
ized constants) are statistically significant: 1, = 4.232, t; = 8.713 and 7,, = 2.098, t5, = 5.954,
respectively.

Utilizing the estimation by maximum likelihood of the adjusted GEV distribution for the max-
imum annual block of negative stock market returns, the following question can be answered: how
probable is it that the maximum annual negative profitability for the following year exceeds the



above negative returns? This probability is calculated utilizing the expression He , ,,(z) where
the maximum block is equal to 1.68%, and so there is a 1.68% possibility that a new maximum
record of negative performance will be established during the following year.

A similar analysis is possible by considering the GEV distribution adjusted for the quarterly
maximum block for the data from the series of stock market returns. The maximum block for the
return of this series is m = 94. It is observed that estimated standard asymptotic errors are much
lower when quarterly blocks are employed. The shape estimator is & = 0.268 (tZ = 2.031) and in
this case, the asymptotic interval at 95% of confidence for £ is [—0.004,0.532] and contains only
positive values for the shape parameter, indicating a thick-tailed distribution, with the estimated
probability equal to 0.0172. Finally, the estimations of the shape parameter and the standardized
constants are significant: 7, = 2.419, t3 = 9.186 and 7, = 2.419, t5, = 13.705, respectively.

In Figure 9, the asymmetric form of the asymptotic confidence interval can be observed. This
Figure allows for a response to the question, what is the level of stock market return for the last
forty years? The estimated point of the level of return (11.67%) is at the point where the vertical
line cuts at the maximum point of the asymmetric curve. The upper extreme point of the confidence
interval of 95% is approximately 22%; this point is located where the asymmetrical curve cuts at
the straight horizontal line. In addition, the Figure 10 shows the estimation of the expected yield
level of the negative stock market returns for the forty years with a confidence level band of 95%
based on the model of GEV for an annual maximum block. The Figure 10 has the horizontal line
situated at the mean corresponding to the expected level of return (11.67%), the pointed horizontal
line that is located below the expected level of return corresponding to the lowest level of return
(9.33%), and the pointed line above the expected level of return corresponding to the highest level
of return (22.21%). In this Figure, the 24 annual maximum blocks (m = 24) obtained from the real
data of the stock market returns (point cloud) can also be seen, in which only two points exceed
the lower extreme.

Following Zivot and Wang (2006), the 40-year level of return can also be estimated based on
the GEV fitted to quarterly periods as a maximum, where forty years correspond to 160 quarters,
obtaining the lowest and highest level of return; see Figures 11 and 12. In Figure 12, the horizontal
line located on the mean corresponds to the expected level of return (17.18%); the dotted horizontal
line is located below the level of expected return corresponds to the lowest level of return (10.88%)
and the dotted line above the expected level of return corresponds to the highest level of return,
being equal to 40.68%. This Figure also shows the 94 (m = 94) quarterly maximum blocks obtained
from the data on stock market returns (point cloud) below the lower band of confidence of the
confidence interval, except for two points, which means that the return for these 160 quarters must
be above these values.

According to Zivot and Wang (2006), modeling only the maximum block of data is inefficient
if there is other data available on the extreme values. A more efficient, alternative approach that
utilizes more observations is to model the behavior of extreme values above a given high threshold.
This method is called peaks over thresholds (POT). Another advantage of the POT method is that
the common risk measurements such as the, VaR and ES, can be calculated easily'®.

To motivate the importance of the foregoing in Figure 13, the calculation of the accumulated

5 For risk administration purposes, insurance companies may be interested in the frequency of occurrence of a large
demand above a certain threshold, as well as the average value of the demand that exceeds the threshold. In addition,
they may be interested in the daily VaR and ES. The statistical models for extreme values above a threshold can be
used to tackle these questions.



distribution and probability functions are shown with 5(k) =1 for a Pareto (£ = 0.5), exponential
(£ =0), and Pareto type II (§ = —0.5) distributions. The Pareto type II distribution is defined only
for y < 2. According to Zivot and Wang (2006), to infer the tail behavior of the observed losses,
a qg-plot is created using the exponential distribution as reference distribution. If the excess on
the threshold is a thin-tailed distribution, then the generalized Pareto distribution is exponential
with £ = 0 and the gg-plot should be linear. Deviations from the linearity in the gq-plot indicate
thick-tailed behavior (£ > 0) or bounded tails (£ < 0).

In Figure 14, the gg-plot is observed for the distribution of negative stock market returns through
the threshold when this is equal to one (k = 1). The selection of the threshold under this methodol-
ogy is complicated, so for the identification of the threshold, there are a number of methodologies,
such as parametric and graphic methods'®. The Figure 14 shows a slight deviation from the linear-
ity for negative stock market returns, due to which it is concluded that the distribution of negative
stock market returns is a thick-tailed distribution.

The main distributional model for excess through the threshold is the GPD, so on defining the
excess function of the empirical sample mean, a graph can be prepared in which the expectation of
the values above the threshold  is represented, once the threshold has been exceeded on the vertical
axis associated with each of the thresholds. This is useful for discerning tails of a distribution
against the different possible levels of threshold s on the horizontal axis. This Figure must be
approximately linear at the level of the selected threshold, and it is possible to determine intervals
on whose basis the threshold can be selected. In general, the thick-tailed distributions give way to a
mean excess function that tend toward the infinite for high values of x and display a linear form with
a positive slope. The above-mentioned is shown in Figure 15. On the vertical axis, the empirical
mean excess is represented for the series of stock market returns, and on the horizontal axis, the
threshold & is represented. If the points that are represented have an upward trend (upward slope),
this indicates thick-tailed behavior in the sample represented, as well as a GPD with positive shape
parameter £ > 0. If there is a downward trend (negative slope), this shows the thin-tailed behavior
of the GPD with negative parameter ¢ < 0. Finally, if an approximately linear graph is obtained
(tends toward the horizontal axis), this indicates a GPD and the tail behavior is exponential (an
exponential excess distribution), with the shape parameter approximately equal to zero (¢ = 0).
From the observation of Figure 15 on mean excess, a declining trend for the data up to the value of
the threshold k = —1 is detected, which indicates a thin-tailed distribution therein; but from this
value for the threshold, there is an upward trend for the data, indicating the thick-tailed behavior
in the sample represented!”.

Once the mean excess function is determined, the tails of the distribution of negative stock
market losses are estimated for the period of analysis by way of the maximum likelihood estimation
of the parameters 3(x) and & of the GPD. To determine this estimation, a threshold s, must be
specified, which must be big enough for the approximation of the GPD to be valid, but must
also be small enough so that a sufficient number of observations is available for an exact fit; see
Carmona (2004). In the Figure on the excess of the mean (Figure 16) for stock market returns, it is
observed that the threshold has a value of one; that is k = 1 and may be appropriate for the GPD
to be valid. The estimation of the parameters indicates ¢ = 0.185 (t; = 4.463) and B(1) = 0.941

(tﬁ(l) = 18.801). If the shape parameter estimated for the GPD (§ = 0.185) is compared with
1 One of these methods is the Figure of the mean of excesses.
"Empirical evidence on different behavior in the tails of the Peruvian stock market returns is also found in Bedén
and Rodriguez (2014) and Language Lafosse et al. (2014).




the GEV estimations of the yearly and quarterly maximum blocks, it is seen that this is higher
in the case where the analysis is based on quarterly data (& = 0.268), but less if annual data are
used (£ = —0.020), being close to zero in the latter case. According to Carmona (2004), Figure 16
shows the underlying distribution. On the extreme left the survival function 1 — F'(x) is represented
on the vertical axis instead of the cumulative distribution function F'(z) and it is seen that the
curve moves very close to the horizontal axis, so it is extremely difficult to correctly quantify the
quality of the fit. This Figure is not very useful, so on the extreme right a Figure is observed that
represents the survival function in logarithmic scale on the vertical axis, which helps ensure that
the fit of the distribution is adequate by taking into account the available data. Observing both
Figures, it is concluded that the fit is good.

Changing the value of the threshold brings about changes in the estimation of £, so the stability
of the shape parameter must be considered. It is optimal not to depend on a procedure that is
too sensitive to small changes in the threshold selection. In effect, given that there is no clear
procedure for the selection of the threshold with a high level of accuracy, the estimation of the
shape parameter must remain robust in the face of variations in the errors in the selection of this
threshold. The best way of verifying the stability of the parameter is through visual inspection.
Now, to show how the estimation by maximum likelihood in the shape parameter £ varies with the
threshold selected, we observe Figure 17 where the lower horizontal axis represents the maximum
number of threshold excesses, and is assumed to be equal to six hundred. On the upper horizontal
axis, the threshold is represented, and on the vertical axis, the estimation of the shape parameter
with 95% confidence. In the Figure it is seen that & has very stable behavior close to 0.185 for
threshold values lower than 1.91.

In accordance with the above, Figure 18 shows how the estimator of the GPD shape parameter
varies with the threshold, where the start of the percentile has been specified based on the data equal
to 0.9, to be used as a threshold that fits the model. In the upper part of the Figure (horizontal
axis), the proportion of the points included in the estimation is represented. This information
is useful when it comes to deciding whether or not it is necessary to take seriously some of the
estimations of £ that appear on the left and right extremes of the Figure. The central part of the
Figure should essentially be horizontal, though this does not always result in a straight line, when
the empirical distribution of the data can be reasonably explained by a GPD. Finally, on the lower
part of the Figure (horizontal axis) the threshold is represented. In Figure 18, the left-most part
of the Figure should be ignored, as if the threshold is too small, much of the data (that must be
included in the center of the distribution) contributes to the estimation of the tail, skewing the
result. Similarly, the right-most part of the Figure must also be ignored, as if the threshold is too
big, few points will contribute to the estimation. This is the case in the current situation, and a
value of £ = 0.185 appears to be a reasonable estimation for the intersection of a horizontal line
fitted to the central part of the Figure.

On the other hand, according to Zivot and Wang (2006), it is often desirable to estimate the
parameters { and [B(k) through the maximum likelihood estimation of the GPD seperately for
the upper and lower tails of the negative returns (POT analysis). In the analysis of the mean
excess through the threshold (Figure 15) the lower threshold is determined, which is equal to —1.
Similarly, with the help of this Figure, the upper threshold is selected, which is equal to 1. The
estimations for the lower threshold are { = 0.185 and B(Fc) = 0.912, while for the upper threshold
they are £ = 0.217 and (k) = 1.087. Note that the estimated value of the parameters £ and 5(k)
are the same as the estimates in the analysis of excess on the previously realized threshold when
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the threshold equal to minus one was estimated (see Figure 15).

The next analysis is very similar to the previous, with the difference being the presence of two
tails instead of one. The Figure 19 shows the gg-plots of the excess on the specified threshold versus
the quantiles of the GPD by employing the estimated shape parameters of the upper and lower tails.
In this case, the lower tail (left) could start at minus one, and the upper tail (right) at one'®. In
Figure 19 (in both representations) it is seen that the point sets form a straight line up to a certain
stage, so it is reasonable to assume that a GPD fits the data. Moreover, the two estimations for
the shape parameter £ are not the same based on the particular selections of the upper (0.217) and
lower (0.185) thresholds. If the distribution is not symmetrical, there is no special reason for the
two values of £ to be the same; that is, there is no particular reason why, in general, the polynomial
decay of the right and left tails must be identical.

At the start of this research it is held that for better understanding of the risk, the VaR and ES
should be borne in mind to quantify the financial risks. The estimation of these risk measurements
is performed for negative stock market returns for the quantiles ¢ = 0.95 and ¢ = 0.99, which
are based on the GPD'Y. For the case of the GPD, it is inferred that with 5% probability, the
VaRyg5 = —2.146% and, given that the return is less than -2.146%, the ESO 95 18 -3.562%. Similarly,
with 1% probability, the VaRo 09 = —4.309% with a ESO 99 = —6.217% given that the return is less
than -4.309%. Compared with the results obtained utlhzlng a Normal distribution, the VaRo 95 is
less than the estimation of the GPD. Nonetheless, the VaRo 99 is higher in the case of the GPD in
comparison with the Normal distribution. In the case of the ESO o5 and ESO 99, both are higher
using the GPD approximation. The difference at 99.0% is notable and important (6.217% in the
GPD compared with 4.375% for the Normal distribution).

Once adjusted to a model of GPD for the excess of stock market returns above a threshold,
we proceed to the estimation of valid asymptotic confidence intervals for the VaR, and the ES
These intervals can be visualized on Figure 20 with the tail estimate Fi(z) = 1 — 7[ +€x ( )]
The confidence intervals for the VaR are [2.062,2.240] and [4.048, 4.643] for 95% and 99%, respec-
tively. With respect to the ES, the intervals are [3.358,3.839] and [5.595, 7.156] for 95% and 99%,
respectively.

Figure 21 allows for an analysis of the sensitivity of VaRR, estimated in response to changes
in the threshold k. It is observed how the estimation by maximum likelihood of the parameter
of form £ varies with the threshold. In the Figure, it is estimated that the parameter of form &
has behavior that is very stable and close to the estimated value of the Value at Risk (4.309) for
threshold values of less than four.

According to McNeil et al. (2005), the GPD method is not the only way of estimating the tails
of a distribution as has been performed above. The other methodology for the selection of the
threshold is based on the Hill estimator, estimating, in a non-parametric way, the Hill tail index
a = 1/¢ and the quantile z,j, for the negative stock market returns. This estimator is often a good
estimator of «, or its reciprocal £. In practice, the general strategy is to graph the Hill estimator for
all possible values of k& (numbers of excesses through the threshold). Practical experience suggests
that the best options of k are relatively small -for example, between 10 and 50 of statistical orders

18Tt should be recalled that the upper and lower thresholds do not necessarily have to be equal in absolute value,
as they are in this case.

Y Under the assumption of Normally distributed returns, it is found that VaRo.99 = 4 0 X go.99 and ESp.99 =
u+ox lff;()z) for the case of the quantile 0.99.

20Which are based on the delta method of the likelihood log function profile.
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in a sample of 1000. In Figure 22, the Hill estimator {k,&;f? : k= 2,...,n} is estimated for
negative stock market returns of the shape parameter &. We7expect to find a stable region for
the Hill estimator where estimations are constructed based on the different numbers of statistical
order. In this Figure, the upper horizontal axis represents the threshold associated with the possible
values of k; in the lower horizontal axis, the number of observations included in the estimation is
represented, and finally the confidence interval is observed at 95% (dotted lines). According to the

results, it is observed that the estimation of the parameter does not stabilize as the statistical order

increases, due to which § ( ) is quite unstable. It should be borne in mind that in practice, the
ideal situation does not usually occur if the data does not come from a distribution with a tail that
changes with regularity. If this occurs, the Hill method is not appropriate. The serial dependence
on the data can also impair the performance of the estimator, although this can also be said of the
estimator of the GPD.

4 Conclusions

Using daily observations of the index and stock market returns for the Peruvian case from January
3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability, estimates
maximum quantiles and tail probabilities of this distribution, and models the extremes through a
maximum threshold. This is used to obtain the best measurements of VaR and ES at 95% and
99%.

One of the results on calculating the maximum annual block of the negative stock market
returns is the observation that the largest negative stock market return (daily) is 12.44% in 2011.
Moreover, if it is estimated that the probability of the maximum negative annual profitability for
the following year exceeds all previous negative returns, turning out equal to 1.68, there is a 1.68%
possibility of a negative maximum record of the negative yield being stabilized during the following
year.

Then, by way of the estimator of maximum likelihood, the parameter of form and the asymp-
totic interval are estimated at 95% confidence thereof for the annual and quarterly maximum block.
The results indicate that the shape parameter is equal to -0.020 and 0.268, as well as the asymptotic
interval [-0.337, 0.2968] and [-0.004, 0.532] for the maximum annual and quarterly block, respec-
tively. The shape parameter estimation (-0.020) of the calculation of the maximum annual block
of negative stock market returns is insignificant, due to which the value of this parameter is equal
to zero and determines the tail behavior of the GEV distribution, and it is concluded that the
non-degenerate distribution function is Gumbel-type. In the case of the estimation by maximum
likelihood for the maximum quarterly block, a positive value was obtained for the shape parameter
(0.268), with this being significant, indicating a thick-tailed distribution (Fréchet).

For the case of the GPD, it is inferred that with 5% probability, the daily return would be as
low as -2.146% and, given that the return is less than -2.146%, the average of the value of the
return is -3.562%. Similarly, with 1% probability, the daily returns could be as low as -4.309%
with an average return of -6.217%, given that the return is less than -4.309%. Compared with the
results obtained utilizing a Normal distribution, the VaRg.g5 is smaller with the estimation of the
GPD. Nonetheless, the VaRO 09 1s hlgher in the case of the GPD, in comparison with the Normal
distribution. In the case of ESO o5 and ESO 99, both are higher using the GPD approximation. The
difference in 99.0% is notable and important (6.217% in the GPD, compared with 4.375% for the
Normal distribution).
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Finally, the non-parametric estimation is performed of the Hill tail-index and the quantile for
negative stock market returns, expecting to find a stable region for the Hill estimator. The results
related to the estimation of the parameter do not stabilize as the statistical order increases, due to
which the estimator of the Hill tail-index is quite instable. This allows to be inferred that the data
does not come from a distribution with a tail that regularly changes, where the estimated values of
the Hill parameter of form suggest a threshold close to one, according to their respective statistical
order.
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Figure 1. Daily Closing Prices of the Stock Market of Peru
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Figure 2. Daily Percentage Returns of the Stock Market of Peru
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Figure 3. Generalized Extreme Value (GEV) CDFs for Fréchet, Weibull and Gumbel
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Figure 17. Estimates of the Shape Parameter for the Daily Negative Returns as a Function of the
Threshold
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Figure 18. Estimates of the Shape Parameter with Time-Varying Threshold
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Figure 19. Estimated Tails when Distributions does not have Lower or Upper Limit
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Figure 21. Estimation of the VaRg.g9 as a function of the Threshold
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Figure 22. Estimates of the Hill ¢ for the Daily Negative Returns
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