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Distinguishing between True and Spurious Long Memory in the
Volatility of Stock Market Returns in Latin America

Renzo Pardo Figueroa Gabriel Rodríguez
PUCP, BCRP Ponti�cia Universidad Católica del Perú

Abstract

In this study, we investigate the long term dependence or long memory present in the volatility of the
stock market returns of Peru, Brazil, Mexico, Chile, Argentina, and the S&P500. We start analyzing
the form of the autocorrelation function (ACF) and the estimated spectral density. Moreover,
volatility is modeled by way of FIGARCH processes that contribute additional indications of this
behavior. Following a testing approach, the W statistics of Qu (2011), Wc, �� and Zt due to
Shimotsu (2006), and the statistics td(1=2; 1; 4=5; 1), and mean � td of Perron and Qu (2010) are
used to verify for long memory. Also we show evidence about the behavior of the long memory
estimator bd for di¤erent sample sizes included in the estimation procedure. The evidence reported
graphically and through the statistics suggest that the generating process of the volatility series
is spurious memory, except for Chile, whose evidence of spurious memory is weak. Moreover, the
graphics contain important information on the spurious memory behavior. The results of this study
suggest that in reality, the long memory that is usually found in empirical studies would rather be
associated with spurious memory, which could be due to the presence of structural breaks.
JEL Classi�cation: True and Spurious Long Memory, Fractional Integration, Frequency Domain
Estimator, Semiparametric, Structural Change.
Keywords: C12, C14, C22, G12.

Resumen

En este estudio, investigamos la dependencia de largo plazo o de larga memoria presente en la
volatilidad de los rendimientos del mercado de valores de Perú, Brasil, México, Chile, Argentina, y
el S&P500. En un primer momento se analiza el comportamiento de la ACF y la densidad espectral.
Por otra parte, la volatilidad se modela por medio de procesos FIGARCH que añaden evidencia a
lo observado visualmente. Para veri�car la presencia de la verdadera larga memoria seguimos un
enfoque de pruebas estadísticas. En este sentido, el estadístico W de Qu (2011), los estadísticos
Wc, �� y Zt propuestos por Shimotsu (2006), y los estadísticos td(1=2; 1; 4=5; 1), y mean � td
de Perron y Qu (2010) son utilizados. También mostramos evidencia sobre el comportamiento del
estimador de larga memoria bd para diferentes tamaños de las muestras incluidas en el procedimiento
de estimación. La evidencia reportada grá�camente y a través de los estadísticos sugieren que el
proceso de generación de la serie de la volatilidad es de memoria espuria, a excepción de Chile
cuya evidencia de memoria espuria es débil. Por otra parte, los grá�cos contienen información
importante sobre el comportamiento de la memoria falsa. Los resultados de este estudio sugieren
que, en realidad, la memoria larga que se encuentra generalmente en los estudios empíricos son de
memoria falsa, lo que podría deberse a la presencia de cambios estructurales.
Classi�cación JEL: Verdadera y Falsa Memoria Larga, Integración Fraccional, Estimator en el
Dominio de las Frecuencias, Semiparamétrico, Cambio Estructural.
Palabras Claves: C12, C14, C22, G12.
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Renzo Pardo Figueroa Gabriel Rodríguez2

Ponti�cia Universidad Católica del Perú Ponti�cia Universidad Católica del Perú
Central Reserve Bank of Peru

1 Introduction

Typically, the volatility of �nancial series displays long-term dependence or long-memory. This
property is represented in the domain of time by the behavior of its sample autocorrelation function
(ACF), which presents signi�cantly di¤erent values from zero up to a large number of lags, indicating
a hyperbolic decay. In the domain of frequencies a particular behavior is also observed: the weight
of low frequencies in the spectral density is greater, with rapid growth in this function observed as
the frequencies approach the the origin. Several authors document this characteristic; see Taylor
(1986), Ding et al. (1993), Dacorogna et al. (1993), Robinson (1994), among others.

There are several possible formalizations for this de�nition; see McLeod and Hipel (1978),
Robinson (1994), Beran (1994) and Baille (1996), among others. We follow the de�nitions presented
in Perron and Qu (2010). Let fxtgTt=1 be a stationary time series with spectral density function
fx(w) in the frequency w, so xt has long memory if fx(w) = g(w)w�2d, for w ) 0; where g(w) is a
smooth variation function in a neighborhood of the origin, which means that for all real numbers t,
it is veri�ed that g(tw)=g(w)) 1 for w ) 0. When d > 0, the spectral density function is growing
for frequencies that are increasingly close to the origin. The rate of divergence to the in�nite
depends on the given value of the parameter d. On the other hand, let 
x(�) be the autocorrelation
function (ACF) of xt, so xt has long memory if 
x(�) = c(�)�2d�1, for � ) 1; where c(�) is a
smooth variation function3. When 0 < d < 1=2 the autocorrelation function declines at a slow rate
that is dependent on the value of the parameter d.4

The long memory property was initially described by Hurst (1951) in a study related to the
construction of a dam on the River Nile, where it was observed that the periods of greater growth
and of drought on this river were not random; rather, they tended to cluster, providing evidence of
greater persistence of these events over time. This long-term persistence implies that the informa-
tion posted today will a¤ect the variability of the series in the future in accordance with its degree
of long memory. Hurst (1951) put forward the rescaled range (RS) as a measurement of the degree
of long-memory. The RS statistic is equal to the range of the series of partial sums of the �rst k
deviations from the original series xt with respect to its average, divided or rescaled by its standard
deviation. Greene and Fielitz (1977) apply the RS statistic to the series of asset returns listed on

1This paper is drawn from the Thesis of Renzo Pardo Figueroa (2014) at the Master of Economics Program,
Graduate School, Department of Economics, Ponti�cia Universidad Católica del Perú. We thank useful comments of
Fernando Pérez Forero and Paul Castillo (Central Bank of Peru), Pierre Perron and Z. Qu (Boston University).

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Ponti�cia Universidad Católica del
Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail
Address: gabriel.rodriguez@pucp.edu.pe.

3A practical de�nition of long memory is to state that the sum of the autocorrelations is in�nite; that is,
limT)1

PT
j=�T j�j j =1.

4These de�nitions in the domains of frequency and time are equivalent if a few general conditions are veri�ed in
accordance with Beran (1994).
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the New York stock exchange, and most of this series displays long memory.
However, Lo (1991) showed that the RS statistic has problems in discerning long-term depen-

dence in the presence of short-term dependence. For example, the short-term dependence present
in an AR(1) process gives, as a result, values of the RS statistic that are similar to the afore-
mentioned when the persistence is long-term. To overcome this inconsistency, Lo (1991) proposes a
modi�cation of the statistic that consists of replacing the denominator with a consistent estimator
of the variance of the partial sum. The tests performed in Lo (1991) for the same assets as Greene
and Fielitz (1977) discard the possibility of long memory.

For their part, Willinger et al. (1999) point out that the results of the modi�ed RS statistic
could be wrong, as this estimator is strongly biased to the rejection of the long-memory hypothesis
when the degree thereof is small. Despite these disadvantages, the statistics constitute a good
approximation and continue to be used in empirical references.

Moreover, the statistic known as the Hurst exponent (H), which was put forward in Mandelbrot
(1972, 1975), is accepted. This statistic is equal to the limit of the ratio between the logarithm of
the RS statistic and the logarithm of the sample size, when the size of the sample tends towards
in�nity. The values of H are quite instructive: for 0 < H < 0:5, the series is said to display
antipersistence; for 0:5 < H < 1, the series shows persistence or long-memory; and if H = 0:5, the
series is an independent process or is purely random.

Granger and Joyeux (1980) and Hosking (1981) introduce the �rst long-memory models known
as fractionally integrated models I(d), denoted ARFIMA(p,d,q), which allow the parameter of
integration d to take fractional values in place of 0 or 1. General procedures have been put forward
for the estimation of the fractional integration parameter d. These methods are twofold: parametric
and semiparametric. Yajima (1985), Fox and Taqqu (1986), and Dahlhaus (1989) developed the
statistical properties of the parametric estimators. These estimators make explicit the structure of
the ACF or of the spectrum, which allows a characterization of all autocorrelations and not just the
decreasing hyperbolic. They use maximum likelihood methods with good asymptotic properties,
but if the model is poorly speci�ed, the estimators will be inconsistent.

The procedure proposed in Fox and Taqqu (1986) is an approximation to the maximization of the
Gaussian likelihood function. This method is based on the likelihood function in the domain of fre-
quencies originally put forward by Whittle (1962): Lx;T = 1=4

R �
��

n
log fx(w) +

Ix;T (w)
fx(w)

o
dw, where

Ix;T (w) is the periodogram of the series xt de�ned as: Ix;T (w) = 1
2�T

���PT
t=1(xt � x) exp(itw)

���2.
Fox and Taqqu (1986) obtain asymptotic results for certain parameters of the model and under
certain restrictions on the spectral density of the process. Dahlhaus (1989) extends these results
and demonstrates that the Whittle estimator is consistent and asymptotically Normal in stationary
Gaussian AFIRMA processes, and also establishes conditions so that this estimator is asymptoti-
cally e¢ cient. Nonetheless, according to Dahlhaus (1989), the behavior of the estimator in small
samples is very poor. This author concludes that the exact maximum-likelihood procedures are
better.

The semiparametric parameters do not require a speci�cation of the structure of the underlying
I(d) model. These estimators are based on the calculation of the periodograms and are principally
of two kinds: the estimator of the logarithm of the periodogram (estimator bd) proposed by Geweke
and Porter-Hudak (1983) and the local Whittle estimator ( ed estimator), which was re�ned by
Künsch (1987) and Robinson (1995b). The bd estimator is obtained on the basis of the following
minimum least squares regression, using the observations belonging to the range of j = 1; : : : ;m,
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where, Ix;T (wj) is the periodogram in the j-th Fourier frequency wj = 2�j=T (j = 1; :::; [T=2]):
log [Ix;T (wj)] = c � 2d log

�
2 sin(

wj
2 )
�
+ �j ; where the parameter m represents the upper limit of

the frequencies utilized, the frequencies close to the origin are used in order to avoid possible
speci�cation errors caused by the highest frequencies. One rule is to utilize m = T a, where a = 0:5;
0:6; 0:7.

The asymptotic properties are derived in Robinson (1995a). This author proposes a modi�ed
version and shows the properties of asymptotic Normality and consistency for values of the para-
meter in the range �1=2 < d < 1=2. Also suggested is the elimination of the lowest frequencies by
way of a truncation, in order to reduce the bias of the estimation. Nonetheless, this procedure is
not recommendable in �nite samples, as the reduction of the bias attained by truncating the range
of frequencies does not compensate the increase in variance, as was seen in Hurbich and Beltrao
(1994).

On the other hand, the ed estimator is obtained based on the following objective Gaussian
function, which represents the discrete version of the Whittle likelihood function (1962), for fx(w) =

Gw�2d; that is, Qm(G; d) = 1
m

Pm
j=1flog(Gw

�2d
j ) +

w2dj
G Ix(wj)g, where m is an integer less than

T . The procedure estimates d and G based on the minimization of Qm(G; d) so that: ( eG; ed) =
argminG�(0;1);d�[�1;�2]Qm(G; d), where �1and �2 are numbers such as �1=2 < �1 < �2 < 1.
The true values of the parameters are denoted by G0 and d0, and by concentrating the objective
function with respect to G, the following is obtained: ed = argmind�[�1;�2]R(d), where R(d) =

log eG(d)� 2d 1mPm
j=1 logwj , eG(d) = 1

m

Pm
j=1w

2d
j Ix(wj).

Robinson (1995a, 1995b) showed that the two types of semiparametric estimators are asymp-
totically Normally distributed, with the same rate of convergence, but with the variance of the
estimator ed smaller than the estimator d̂; thus, the estimator ed is more e¢ cient. The disadvantage
is that the calculation is more laborious as it involves methods of numerical optimization. The
properties of these estimators continue to be studied, with subsequent references including Velasco
(2000), Phillips and Shimotsu (2004), and Shimotsu and Phillips (2006), among others.

Empirical works relating to the volatility series initially utilized GARCH and stochastic volatil-
ity models. The main disadvantage of these models is that they do not allow long memory to be
generated. Therefore, to collect the empirical evidence in the volatility, models were proposed that
included fractional integration in the equation of variance. For example, Baille et al. (1996) and
Bollerslev and Mikkelsen (1996) consider fractionally integrated GARCH and EGARCH models
(FIGARCH and FIEGARCH), respectively while Breit et al. (1998) and Harvey (1998) develop
analogous stochastic volatility models. Moreover, Tse (1998) extends the GARCH model of asym-
metric potential (APARCH) of Ding et al. (1993) to incorporate fractional integration. This
model, known as FIAPARCH, allows an asymmetric response to the volatility of positive and neg-
ative shocks, also renders the power of returns endogenous in the equation of conditional variance
that includes long-term dependence in the volatility. Tse (1998) �nds this model applicable to the
yen/dollar exchange rate.

Though the fractionally integrated processes reproduce long memory, there are many other
processes that have this property. Granger and Ding (1996) present models of this type, among
them generalized fractionally integrated models that arise from the aggregation of the data, the
variant coe¢ cient models, and non-linear models. These authors �nd signi�cant variability in
the estimates of parameters in the fractionally integrated models across subperiods of the series.
To explain this behavior, they employ a model with two fractionally integrated process regimes
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utilizing a Markov chain. This model is capable of generating a variety of forms of the ACF
by producing di¤erent long-memory processes. This point is made analytically and by way of
simulations in Diebold and Inoue (2001). Models are formulated with stochastic regime switching
that are capable of generating long memory when a small number of regime switches occur. The
model is a process with mean plus noise and is given by xt = �t + �t with �t = �t�1 + vt and vt is
0 with probability p and wt with probability 1� p, �t and wt are Normal distributions. Following
Diebold and Inoue (2001), if the probability of regime switching is small (p = O(T 2d�1), with
0 < d < 1) then xt = I(d� 1).

Another model is the permanent stochastic break process (Stopbreak) of Engle and Smith

(1999), which is not stationary and is given by xt = �t + �t with �t = �t�1 +
�2t�1

+�2t�1

�t�1 and where

�t has Normal distribution. If E(�6t ) < 1, 
 ) 1 when T ) 1 and 
 = O(T �) for some � > 0
then xt = I(1� �).

Gourieroux and Jasiak (2001) reach very similar conclusions through an analysis of the ACF. A
Markov chain model is formulated with two regimes with a very low probability of regime change
capable of reproducing the ACF behavior that slowly decays in its lags. In the limit case of very low
probability of regime switching, the ACF of this non-linear model converges on a non-degenerate
distribution. Therefore, the hyperbolic decay rate may be the result of the non-linear dynamic of
the model with infrequent regimes, instead of the linear dynamic of a fractionally integrated model.

A time series will present true long memory if the underlying process has long-term dependence
or, equivalently, if it is modeled as a fractionally integrated process. It is said that the long
memory of the series is spurious in nature when it is not the result of long-term dependence but
of other di¤erent causes such as regime switching. Hou and Perron (2014) classify these causes
of spurious memory under the name of low frequency contaminants. These contaminants include
stochastic regime switching, deterministic regime switching, and deterministic trends. A short-
memory process contaminated with these components will display spurious memory. Granger and
Ding (1996) include temporal aggregation as a possible cause of spurious memory. Gourieroux and
Jasiak (2001) suggest that common practice in �nancial series of rounding the indices to a number
of decimals arti�cially introduces regime switching and could be a cause of spurious memory in the
data.

Lobato and Savin (1999) identify the spurious memory generated by the non-stationarity in the
series and by the aggregation of the data by way of a process that consists of dividing the series
into stationary subperiods and applying a statistic for long memory in these ranges.

Granger and Hyung (2004) provide analytical and simulation arguments that show that it is
a di¢ cult problem in practice to distinguish between processes with infrequent regime switching
and fractionally integrated processes. The authors demonstrate that both models can explain
the absolute value of the returns well5. According to these authors, the detection of fractionally
integrated processes utilizing traditional methods could lead to the detection of spurious memory
when applied to processes with short memory containing structural break in the mean or in the
trend. To correctly identify between the true long-memory process and spurious memory, di¤erent
solutions have been proposed -one of which is based on the development and application of statistics.
For example, the statistics proposed in Dolado et al. (2005), Shimotsu (2006), Ohanissian et al.

5Even though a procedure for identifying the breaks in the series allows a reduction in the evidence of long memory
when the breaks are taken into account, this evidence is inconclusive, given that the statistics for structural break
are signi�cantly biased in the presence of long memory.
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(2008), and Qu (2011). The new evidence tends to reject the long-memory speci�cations due to
spurious memory in many of the time series that had been considered with long memory in the
previous empirical evidence.

In this study, we investigate the long term dependence or long memory present in the volatility
of the stock market returns of Peru, Brazil, Mexico, Chile, Argentina, and the S&P500. We start
analyzing the form of the ACF and the estimated spectral density. Moreover, volatility is modeled
by way of FIGARCH processes that contribute additional indications of this behavior. To verify
the presence of true long memory we follow a testing approach. In this sense, theW statistics of Qu
(2011), Wc, �� and Zt due to Shimotsu (2006), and the statistics td(1=2; 1; 4=5; 1), and mean� td
of Perron and Qu (2010) are used. Also we show evidence about the behavior of the long memory
estimator bd for di¤erent sample sizes included in the estimation procedure. The evidence reported
graphically and through the statistics suggest that the generating process of the volatility series is
spurious memory, except for Chile, whose evidence of spurious memory is weak. Despite the results
of these statistics being mixed, all series reject the hypothesis of true long memory at least for some
of the statistics. Moreover, the graphics contain important information on the spurious memory
behavior. The results of this study suggest that in reality, the long memory that is usually found
in empirical studies would rather be associated with spurious memory, which could be due to the
presence of structural breaks.

This paper is structured as follows. Section 2 is dedicated to the methodology and presents the
statistics designed to discern true and spurious long memory. The empirical results are reported in
Section 3. The �nal Section presents the conclusions.

2 Methodology

Perron (1989) showed that unit root statistics could lead to erroneous conclusions if the true process
has short memory containing breaks in the deterministic components. As underlined by Mayoral
(2012), it is commonly accepted that the use of techniques for fractionally integrated processes leads
to the detection of spurious fractional integration when applied to processes containing trends or
breaks. The opposite e¤ect is also documented -that conventional procedures for detecting the date
of structural breaks tend to detect spurious breaks usually in half of the sample when there only
exists fractional integration in the data; see Hsu (2001), Dolado et al. (2005).

Perron and Qu (2007, 2010) analyze the properties of a simple but general spurious long-memory
process. This model mixes a process with short memory, with a component that accumulates
realizations of a Bernoulli process. This latter component represents the stochastic regime switching
component. The periodogram of this process for frequencies close to the origen has similar behavior
to a process that contains a unit root and when the frequency increases, the periodogram decreases
more rapidly than that corresponding to a fractionally integrated process.

There are also di¤erences in the limit distribution of the estimator based on the logarithm
of the periodogram (d̂), which was initially derived in Perron and Qu (2007). For a number of
frequencies m close to T 1=3 the estimator bd is located in a vicinity of 1. When m is between T 1=3

and T 1=2, d̂ falls to a level that corresponds to the e¤ect of the stationary component in the
limit distribution and for values of m beyond T 1=2, bd displays a gradual fall explained by the
growth in the importance of the short-memory component. Conversely, if the underlying process
is fractionally integrated, the limit distribution of d̂ is the same regardless of the size of m with
respect to the size of the sample; see Hurbich et al. (1998).
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The statistics proposed in Perron and Qu (2010) are based on these properties of the estimatorbd. Let bda;c be the estimator bd when ma;c is equal to c[T a]. The �rst step is to establish the
following result, due to Hurbich et al. (1998). Under the null hypothesis of a fractionally integrated
stationary process, it is veri�ed that

p
c[T a](bda;c�d0))d N(0; �2=24). The second step establishes

the statistic td and its limit distribution, for 0 < a < b < 1 with a < 4=5, td(a; c1; b; c2) =p
24c1[T a]=�2(bda;c1� bdb;c2)) N(0; 1). The procedure for discerning true and spurious long memory

consists of assessing whether there is a smooth but signi�cant decline in the value of d̂ for values of
m greater than T 1=2. To this end, the statistic td(1=2; 1; 4=5; 1) is utilized. We must also examine
whether there is a rapid decline in the value of d̂ for values of m between T 1=3 and T 1=2. Because
the decline in this range is not monotonic, the maximum di¤erence may not occur in T 1=3. Thus,
the following two statistics are considered: the statistic sup�td = supc1�[1;2] td(1=3; c1; 1=2; 1) and
mean � td = meanc1�[1;2]td(1=3; c1; 1=2; 1), which evaluate the maximum value and the average
value of the statistic td in this range. The limit distributions of these statistics are not analytically
available; thus, the critical values are obtained by utilizing a parametric bootstrap procedure. The
exact size of these two statistics is close to 5%, but reduces as the sample size increases. Perron
and Qu (2010) do not present results related to the power of these statistics.

Ohannisian et al. (2008) propose the following statistic. Let d̂ = (bd (m1); bd (m2); :::; bd (mM ))
be the vector of estimators of the logarithm of the periodogram bd obtained utilizing up to M
levels of aggregation, one level of aggregation from the series xt with period m is given by y(m)s =Pm
�=1 xm(s�1)+� for 1 � s � T=m. The null hypothesis is that the original series is generated by

a stationary process with true long memory; that is, that the integration parameter is the same
across all aggregation levels bd (m1) = bd (m2) = ::: = bd (mM ). Finally, the Wald statistic is given by
Ŵ = (Td̂)

0
(T�T0)�1(Td̂)) �2(M�1), where the matrix � is the matrix of asymptotic covariances

of the distribution of d̂, and T = I� (1=M)1. The exact size of this statistic is simulated by
utilizing di¤erent level of aggregation, and when the matrix of theoretical and simulated covariances
is utilized. The size distortion is greater for a larger number of aggregation levels and by utilizing
the theoretical covariance matrix. The best performance is obtained for M = 4 and utilizing a
matrix of simulated covariances. In this case, the size of the statistic is between 5% and 7%. The
power property of this statistic is evaluated by utilizing simulations of spurious memory models,
which include stationary and non-stationary models of stochastic level shift, the Markov Switching
model with independent regimes and identically distributed with GARCH regimes, and a white
noise model with deterministic trend. The results show powers close to 100% for most of the
models, but only the case when M = 12 and T = 610304 is considered; that is, a very high sample
size seldom found in empirical applications.

On the other hand, Shimotsu (2006) proposes two statistics. The �rst of these is based on the
constancy of the parameter d in subperiods of the series if the true process is I(d). The second
statistic is based on the assumption that if a series is speci�ed as I(d), then its di¤erence of order
d will be represented by a process I(0). In the �rst statistic, the null hypothesis is given by
H0 : d0 = d0;1 = ::: = d0;b, where d0;i is the true value of d in the i-th subsample. The complete
series and the b subsamples formed, each one with the same sample size equal to T=b, con�gure
b + 1 subperiods. Let edb = (ed � d0; ed (1) � d0; :::; ed(b) � d0) be the vector of estimators whereed is the Local Whittle semiparametric estimator. The statistic put forward is Wald-type and is
given by: Wc = 4m

�
cm=b=(m=b)

�
Aedb(A
A0)+(Aedb)0 ) �2(b�1), where A is a matrix of constants,


 is the matrix of covariances and (A
A0)+ denotes the generalized inverse matrix of A
A0. The
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parameter m is the number of frequencies in the estimation of ed and the term cm is included to
correct the bias of this estimator in �nite samples; see Hurvich and Chen (2000), where it is veri�ed
that cm=m) 1 if m)1:

The size and power of this statistic are obtained through simulations. The statistic Wc tends
to over-reject the hypothesis of true long memory, even though this distortion is small except for
b = 8 and for small values of m. The power of the statistic for a mean-plus-noise model is relatively
low, and this is in the range of 50% to 90%. The highest values correspond to b = 8, but these do
not increase signi�cantly with the rise of m. For the stopbreak process, the power of the statistic is
even weaker, particularly for low values of m. It is interesting to observe that in this case, higher
values of b do not improve the power of the statistic. In the Markov Switching model, the power of
the statistic improves signi�cantly with the increase of m. Finally, in the stochastic unit root model
(Gourieroux and Robert (2006)) adequate power levels of this statistic are observed (above 80%
for moderate values of b). The author recommends the use of b = 4 as this speci�cation maintains
a good balance between size and power.

The second statistic uses the unit root statistic Zt of Phillips and Perron (1988) and the statistic
KPSS of Kwiatkowski et al. (1992). In this procedure, �rst the mean of the series is extracted
and then the statistic Zt and KPSS is applied to its di¤erence of order ed, where ed is a consistent
estimator of the true parameter d. Shimotsu (2006) denotes these two statistics as Zt and ��,
respectively. By way of simulations, it is shown that the size of these statistics is slightly less than
5%, but improves with the increase of m. If short memory is signi�cantly included, the statistic Zt
has greater performance in comparison with the statistic ��, whose size is rapidly reduced with the
increase of m. The power is assessed utilizing the same speci�cations of processes with spurious
memory than for the statistic Wc. It is shown that the statistic �� has strong power against the
mean-plus-noise and stopbreak processes, while the statistic Zt has very low power. In contrast,
for the Markov Switching and stochastic unit root processes Zt have an adequate power, but the
statistic �� has a very low power. The author recommends the use of both statistics Zt and �� to
improve the results against the possible processes with spurious memory.

Finally, we detail the last of the statistics, which can be useful for our objective. This statistic,
proposed by Qu (2011), is based on the Whittle likelihood function. This function is given by:

Q(G; d) = 1
m

Pm
j=1flogGw

�2d
j +

Ij

Gw�2dj

g, where Gw�2dj is the spectral density function of the

process xt with stationary long memory, Ij = Ix(wj) is the periodogram of the series in the frequency
wj and m is a lower number than the sample size T . The minimization of Q(G; d) with respect to
G leads to the following expression of the likelihood function R(d) = logG(d)� 2d 1m

Pm
j=1 logwj ,

where G(d) = 1
m

Pm
j=1w

2d
j Ij . The derivative of the function R(d) with respect to the parameter

d is given by @R(d)
@d = 2G0p

mG(d)
fm�1=2Pm

j=1 vj(
Ij

G0�
�2d
j

� 1)g, where vj = logwj � 1
m

Pm
j=1 logwj

is an expression in deviations of the mean and G0 is the true value of G. The expression in
brackets is the main input of the statistic. Under the null hypothesis and evaluated in d0, this
expression is equal to m�1=2Pm

j=1 vj(
Ij

G0�
�2d0
j

� 1) which satis�es a central limit theorem and was

demonstrated in Robinson (1995b). The proposed statistic has an expression that is very close

to the previous W = supr"(�;1](
Pm
j=1 v

2
j )
�1=2

����P[mr]
j=1 vj(

Ij

G(ed)��2edj

� 1)
����, where ed is the Whittle Local

semiparametric estimator, m is the number of frequencies in the estimation procedure (form = T 0:7

a good balance is achieved between size and power, and it is thus suggested in practice) and � is
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a trimming parameter . Note that � " (0; 1) establishes the minimum number of summands in the
sum; thus, the value of the statistic W and its critical values are both decreasing functions of �. In
practice, if the sample size is small, then the use of � = 5% is recommended, but in large samples
it is possible to use smaller trimmings.

This statistic diverges for two types of spurious process: the �rst is the model with short memory
and stochastic regime switching, which was considered in Perron and Qu (2007). The second model
is one that combines short memory with a trend component with smooth variation. Simulations for
a set of processes are utilized to evaluate the size of the statistic. Included among these statistics are
ARFIMA models with or without short memory components and fractionally integrated processes
with measurement errors. The size of the statistic W is stable for di¤erent sample sizes, processes,
and values of m and �. There is a clear trend towards over-rejecting the null hypothesis when m is
greater; that is, when m = T 0:75.

Qu (2011) also evaluates the size and power of the other statistics for sample sizes of up to
9; 000 observations. The statistic Ŵ shows the best size properties. The statistic Wc tends to
over-reject the long-memory hypothesis primarily for the process with measurement errors (size
of 11%). The other statistics (��, Zt and mean � td) display sizes that decrease as the sample
size increases. To evaluate the power property, six models were considered, the �rst �ve of which
are dealt with in Ohannisian et al. (2008), and the sixth contains a smooth but non-monotonic
trend. For all processes, except that which displays a monotonic trend, the statisticW with � = 2%
displays the best properties. The power of the statistics Ŵ, Zt and mean � td is generally lower.
It is noteworthy that Ohannisian et al. (2008) show that the power of the statistic Ŵ is 100%
for T = 610; 304 but for sample sizes of less than 9; 000 observations Qu (2011) shows that this
statistic has power below 50%.

The statistic �� has a good performance for models with non-stationary regime switching and
models with monotonic and non-monotonic trends, but its power is very low in Markov Switching
processes and with stationary stochastic regime switching. For its part, the statisticWc has a power
of 70% for stationary and non-stationary regime switching processes and for Markov Switching
processes with independent and identically distributed regimes, but their power is reduced for the
other processes.

In summary, the properties of the statistics depend on the spurious memory-generating process
and the sample size. For processes with possible stochastic regime switching and Markov Switching,
the results of the statistics W and Wc are the most reliable.

3 Empirical Results

The information that we use is taken from Bloomberg. The main indices of the stock markets
in Peru, Brazil, Mexico, Chile, Argentina, and United States were selected. Other countries are
excluded due to their smaller sample sizes, such as Colombia, which only has data for 2001 onwards.

The series of stock market returns for each country are constructed as the di¤erences in their
end-of-day quotes rt= log(P t=P t�1). Volatility is calculated as log(jrtj+ 0:001); that is, the values
of the volatility that are very negative are truncated adding a small constant of 0.001 to the
argument6. There are other proxies of utility, such as the logarithm of squared returns, which do
not alter the main results of the estimations.

6This constant is called �o¤set constant�and is much-used in the literature on stochastic volatility, following on
from Kim et al. (1998), among others.
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The samples for each country are detailed as follows. For Peru, there are 5,970 observations
(January 2, 1990 to December 31, 2013); for Brazil, we have 5,440 observations (January 2, 1990
to December 3, 2013); for Mexico, we have 4,979 observations (January 19, 1994 to December
31, 2013); for Chile, there are 6,231 observations (January 2, 1989 to December 30, 2013) and
for Argentina, we have 6,351 observations (April 11, 1988 to December 30, 2013). Solely by way
of comparison, we also use information for S&P5007 with 7,824 observations (January 2, 1980 to
December 31, 2013).

The descriptive statistics for the returns and the volatility are summarized in Table 1. The
�rst panel shows the statistics for the series of returns, with values close to zero in the mean and
the variance of all series. The standard deviation is slightly higher in the stock market returns
of Brazil and Argentina in line with a broader range of values. The sign and the magnitude
of the asymmetry coe¢ cient di¤er from country to country, and in particular, the stock market
returns of Brazil, Mexico, Argentina, and S&P500 present negative asymmetry. Also, for Brazil,
Argentina and S&P500, the kurtosis coe¢ cient is higher, the other series are leptokurtic a lesser
degree. Finally, the Jarque Bera statistic strongly rejects the hypothesis of Normality of all the
series covered, especially for Brazil, Argentina, and S&P500.

In the second panel, statistics are presented for the volatility series that show similar mean
values, standard deviation, and extreme values. For Peru, Mexico and Chile, the mean is close
to �4:8 and the standard deviation is 0:9 on average; for Brazil and Argentina, the mean is �4:4
and the standard deviation is 1:0. The statistics for the S&P500 are a little di¤erent to the rest
of the indices, especially in the asymmetry coe¢ cent which is zero, while in the other indices, this
indicator is negative. A coe¢ cient of negative asymmetry indicates that the distribution has a left
tail with few low values. The excess kurtosis values are close across the volatilities and on average is
�0:339, which is slightly below the value of 0 corresponding to the Gaussian distribution. Finally,
in accordance with the Jarque Bera Normality statistic, all series show signi�cant deviation from
the assumption of Normality.

The �rst objective of this paper is to provide indications of the presence of long memory in the
volatility series of stock market returns. Figures 1 to 3 provide visual evidence of long memory in
all volatility series. The �rst panel in Figure 1 shows the spectral density8 of stock market returns,
which gives the weight of each frequency to the series variability. That which corresponds to Peru
displays an upward trend for frequencies close to the origin; in the remaining countries, the density
functions are more stable and with similar values for all frequencies. In the second panel that
corresponds to the volatility series, the presence of long memory is much more notable in all cases.

Figure 2 shows the ACFs of the returns up to 1000 lags, and display values within con�dence
bands. For Peru and Brazil, the rate of decay to zero is a little slower. In Figure 3, the behavior
is clearly one of slow decay, displaying long memory in all volatility series. The persistence here is
much more pronounced than in the series of returns, with values above and below zero con�dence
bands for greater lags.

The next exercise consists in estimating statistics for the presence of long memory and ARCH
e¤ects or autocorrelation in the volatility series. The �rst four columns of Table 2 display statistics
for the presence of autocorrelation, which are signi�cant in all series. These can be modeled by
incorporating autoregressive or moving average components. The next four columns display the

7The estimation period is the same as in Qu and Perron (2013) which covers the crisis of 1987 and 2008.
8These results have been obtained using the Oxmetrics program. In the estimation of spectral density, the value

of 20 was used for the lag truncation parameter, which is the default value in Oxmetrics.
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statistics for detecting long memory, which are the RS statistics of Mandelbrot (1972) and Lo (1991)
and the semiparametric estimators bd and ed, which were presented in the previous Section. The
results are similar, the RS statistics reject the absence of long memory in all series. The estimatorsbd and ed show that long memory exists to di¤erent degrees in all series. The values posted by the two
types of estimators are quite close to one another. The values are positive and �uctuate between
0:301 and 0:464 within the range that corresponds to the stationary processes. The value of the
estimator is very similar in Peru, Chile, and S&P500, and in Mexico and Argentina, but is slightly
greater for Brazil.

We also estimate ARFIMA(p,d,q) models for the volatility series. According to Stµaricµa and
Granger (2005), the ARFIMA(1,d,1) speci�cation has good performance in terms of data �t when
the series display long memory. This simple speci�cation is also employed in Perron and Qu (2010)
for the calculation of the critical values of their statistics; in consequence, this exercise may be
useful in evaluating the degree of long memory in the series. Table 3 shows the results9. The values
of the parameters are similar across all series in value and sign. The estimator bd for Peru and
Chile is close to 0:35. In the other markets, this parameter is around 0:43, revealing stationary
long memory in the entire volatility series. The statistics for the residuals suggests that there is
heteroskedasticity that has not been captured in the ARFIMA modeling. The Jarque Bera statistic
con�rms the non-Normality of the residuals. This result suggests that it may be useful to include
a parameter in the model that captures the presence of ARCH e¤ects in the residuals.

Thus, the next exercise consists in estimating FIGARCH models10 for the series of returns.
The volatility of the returns is determined within the model based on the equation of conditional
variance. Table 4 summarizes the results. Various estimations were estimated, including variants
in the equation of the mean and the variance. For Peru and Brazil, it is signi�cant to include
fractional integration in the mean, which suggests some trace of persistence in the series of returns
of these markets; see also Figure 2. This fact is consistent, with which the statistics, the ACF and
the spectral density report. The estimation of the FIGARCH model reports signi�cant fractional
integration in the volatility. The parameter bd in the equation of variance is close to 0:5 in all
series; for Brazil, Mexico and S&P500, this parameter is greater than 0:5. It is interesting to
note that when parameters are included to model the possibility of asymmetry in the volatility,
the parameter d falls. In the case of Peru, the FIEGARCH speci�cation drastically reduces the
parameter bd to a value close to zero11. The parameter of asymmetry is negative, which con�rms
the presence of leverage e¤ects; that is, that the negative returns increase the series volatility more
than the positive returns. In the case of Mexico, the FIAPARCH speci�cation reduces the value
of the parameter bd to a level below 0:5, which does not eliminate the fractional integration of the
volatility series but assures its stationarity. The statistics for the residuals show that they are not
Normal, but the ARCH e¤ects have been considerably reduced, as can be seen on Table 5.

The second aim of this paper is to investigate whether the indications of long memory displayed
are due to the presence of fractional integration or to other causes. To identify whether this behavior
in the volatility series is better represented in the volatility series by processes with true or spurious

9The estimation was carried out on the PC-Give module of Oxmetrics. In all cases, strong convergence was
observed in the optimization procedure.
10The estimation was performed in the module G@ARCH of Oxmetrics. Student�s t distribution was selected for

the residuals instead of the Gaussian distribution to take into account the excess of kurtosis in the returns. Student�s
asymmetric t distribution was also tried, but its parameters were not statistically signi�cant.
11This can be interpreted as the fact that the introduction of non-linearities produces no long memory.
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long memory, we will utilize the statistics mentioned in the previous Section. Table 6 shows the
results. The two �rst columns show the estimated values of the statistic W of Qu (2011) with a
number of frequencies m = T 0:7 and for two alternative values of the trimming � equal to 2% and
5%, respectively. This statistic strongly rejects the presence of a true long memory process in the
volatility series of Peru, Brazil, Argentina and S&P500. The level of signi�cance is 5%, except
for Peru in the case where � = 2% (signi�cance at 10%). Although this statistic does not succeed
in rejecting the presence of long memory for Mexico�s series of volatility, it is observed that the
calculated values of the statistic are close to its critical values, so the non-rejection in this case is
not as convincing as it is for Chile.

The statistic Wc of Shimotsu (2006) rejects the null hypothesis for Mexico with signi�cance to
5%. This statistic also validates the result of the statistic W for Brazil, Argentina and S&P500,
but not for Peru. The statistic ��, also due to Shimotsu (2006), shows evidence of spurious memory
for Brazil and Mexico. The non-rejection of the statistic for the other countries is likewise not very
convincing in this case, as the values are quite close to the critical points of the statistic to 10%
(0.33 on average).

In the case of Shimotsu�s Zt statistic (2006), there is no rejection of the long memory hypothesis
for any series, and the values are quite far from the estimated critical points of this statistic. It
is interesting that this statistic shows a strong trend towards non-rejection of the null hypothesis
while the statistic �� does not. Following Shimotsu (2006), the statistic �� has a high power against
spurious memory models induced by random level shift components, while the power of the statistic
Zt is close to zero in these processes.

Perron and Qu�s td(1=2; 1; 4=5; 1) and mean � td statistics (2010) are closely related to the
behavior of the estimator bd as a function of the range of frequencies m in the regression of the
periodogram. The statistic td(1=2; 1; 4=5; 1) evaluates whether there is a signi�cant decline in the
value of bd for values of m greater than T 1=2, while a rapid decline in the value of bd for values of
m between T 1=3 and T 1=2 is the evidence of the statistic mean � td to detect spurious memory.
The results are quite informative. There is a strong rejection of the null hypothesis in favor of
spurious memory for all volatility series based on the statistic td(1=2; 1; 4=5; 1). Nonetheless, the
statistic mean� td validates this result only for the S&P500. This can be explained in Figures 4 to
9. Panels (b) show the estimator bd calculated utilizing di¤erent values of m, and therein it is clear
that the decrease in the estimator bd based on a certain number of frequencies is best captured by the
statistic td(1=2; 1; 4=5; 1), which evaluates frequencies greater than T 0:5. In the frequencies closer
to the origin it is not clearly observed that the values of the parameter are strongly reduced, as in
these frequencies the behavior of the estimator for all series is more volatile, which does not allow
the statistic mean� td to capture the decreasing trend of the estimator. Note that the decrease in
the fractional estimator starts from a value of around d > 0:5 for Brazil, Mexico, Argentina and the
S&P500. But no clear structural change is observed in the behavior of the fractional parameter.
This behavior explains the di¢ culties in the di¤erent statistics to provide conclusive results.

Panels (c) in these Figures show the behavior of the estimator bd as a function of sample size;
that is, the values of bd estimated by subsamples greater than 300 in size. The estimator for Mexico,
Argentina, and the S&P500 is growing in sample size, including up to the whole sample, but
stabilizes around values such as 0.30-0.35. Meanwhile, the estimators for Peru are decreasing from
a value that is slightly higher than 0.5 but tends, rather, to stabilize for large sample sizes at values
close to 0:3. For Brazil and Chile an initial decline is observed, followed by rapid growth, but the
values stabilize at around 0.35.
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In the case of Chile in panel (b) of Figure 7, a rapid reduction in the estimator bd is observed
in the frequencies close to the origin, but they rapidly increase again. The subsequent decrease
seems to occur subsequently around the frequency m = 160. In this frequency, a strong decline
is produced, followed by a smoother decreasing trend for the parameter. With regard to this, an
attempt has been made to estimate the statistic utilizing alternative sampling periods. Table 6
shows the values of the statistics for the sample period 2005-2013, and the rejection of the null
hypothesis of the statistic W can be observed, with trimming of 5%. For Mexico, Table 6 presents
the results of the statistics in the alternative period 2004-2013, but in this case no rejection is
observed, even though the value of the statistic W in this case is closer to its critical value at 10%.

As can be observed, the results change depending on the period utilized in the estimation. The
volatility series could have periods that post true long memory and other periods that would be
better explained by a spurious memory component. In order to evaluate the sensitivity of the
statistic W , the following exercises are carried out, and generate Figures 10 to 13. Figures 10 and
11 show the estimated values of the statistic W with trimming of 5% and 2% respectively, and
utilizing subsamples with observations up to the observation i, with i in the range of 100 up to the
sample total (the end of the sample changes in each estimation). The continuous and discontinuous
horizontal lines correspond to the critical values at 10% and 5%, respectively. This exercise shows
the sensitivity of the statistic W when the end of the estimation period changes. Even though
there is variability in the results, it is clear that Peru, Brazil and Argentina reject the hypothesis
of long memory for di¤erent subsample sizes. In the case of Mexico, however, the rejection of null
hypothesis occurs only if the �rst 700 observations that correspond approximately to the period
that runs from 1994 to 199712 are considered, but from then on the behavior of the Mexican stock
market�s volatility series appears to correspond to a process with true long memory. Meanwhile,
it can be seen that Chile does not reject the null hypothesis for any subsample, so in this exercise
this behavior corresponding to true long memory cannot be discarded.

Figures 12 and 13 show the values of the statistic W estimated with trimming of 5% and 2%
respectively, utilizing subsamples formed on changing the start of the estimation period. Each
subsample is formed from the observation i and up to the end of the sample, with i in the range of
1 up to the reduced sample size at 100 observations. For Peru the hypothesis of true long memory
is rejected when the complete sample is used, but when subsamples that start from observation
100 onward are considered, the values of the statistic reduce and this hypothesis can no longer be
rejected. From observation 3800 approximately, the values of the statistic show again rejection. In
Brazil and Argentina many sample start dates can be observed, so the long memory hypothesis
is rejected. In the case of Mexico, it is seen that from observation 2800 approximately there are
rejections of the hypothesis, but these are sporadic and return to the area of non-rejection. The
same can be said of Chile, where we can obtain rejections of the null hypothesis if the sample starts
at observation 4000 approximately, which corresponds to 2005. We consider evidence from Figures
10 and 11 as complementary to these of Figures 12 and 13.

The evidence reported graphically and through the statistics suggests that the generating
process of the volatility series is spurious memory, except for the case of Chile whose evidence
of long memory is weak. Despite the results of the statistics being mixed, all series reject the
hypothesis of true long memory, at least for some of the statistics. Moreover, Figures 4 to 9 contain
su¢ cient information on the spurious memory behavior, as if it were a case of true long memory,

12This is interesting to point out, as in 1994 the so called �Tequila� crisis arose, which had signi�cant e¤ects in
Mexico and in the Latin American region.
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ideally these graphs should not display variation in this argument.
The results of this study suggest that in reality, the long memory that is usually found is,

rather, associated with spurious memory, which could be due to the presence of structural breaks
more than to true long memory. The date of the structural breaks present in this series could be
estimated utilizing procedures that have been developed in the literature. For example, Fernández
(2005) identi�es the dates of structural breaks in the volatility of stock market returns and for the
period 1997-2002 �nd 4 dates of break for the Latin American exchanges, namely: 1997 and 1998,
February 1999 and June 2000. These dates are associated with the Asian crisis.

Even though this paper takes a testing approach, there are other paths for responding to the
research question and that incorporate the possibility of structural breaks to explain the long
memory present in the volatility series, especially from the focus on econometric modeling. Lu
and Perron (2010), Li and Perron (2013) and Xu and Perron (2014) apply a model based on non-
observable components where the level-shift component (random and sporadic) is that which inserts
the long-memory e¤ect into the series. This type of component has also been incorporated into a
stochastic volatility model in Qu and Perron (2013).

Humala and Rodríguez (2013) have established the stylized facts for the Peruvian exchange
rate and stock market. This reference establishes a research agenda that is being followed, and
this paper ranks among them. Ojeda Cunya and Rodríguez (2014), Rodríguez, Tramontana Tocto
(2014), and Rodríguez (2014) use a Random Level shifts (RLS) model as in Lu and Perron (2010),
Li and Perron (2013) and Xu and Perron (2014). They �nd that the long memory disappears once
the random level shifts have been discounted. The �rst of these studies apply the volatility of
the Peruvian stock and exchange rate market, and the other reference applies to volatility in the
markets of Latin American countries. In the case of Herrera and Rodríguez (2014), the statistics
mean� td and sup�td are used for the volatility of the Peruvian exchange rate and stock market.
The evidence does not support the rejection of the long memory hypothesis, perhaps due to the
amount of data and the sampling period but also because of the lesser power of the statistics, as
seen in Qu (2011).

4 Conclusions

In this study, we investigate the long term dependence or long memory present in the volatility of
the stock market returns of Peru, Brazil, Mexico, Chile, Argentina, and the S&P500 index. The
analysis of long memory in the series proceeds from the statistics and from the form of the ACF
and the estimated spectral density. Moreover, volatility is modeled by way of FIGARCH processes
that contribute additional indications of this behavior.

To verify the presence of true long memory, the W statistics of Qu (2011), Wc, �� and Zt due
to Shimotsu (2006), and the statistics td(1=2; 1; 4=5; 1), and mean� td of Perron and Qu (2010) are
used. Also presented are graphics as in Qu (2011), which show the behavior of the long memory
estimator bd for di¤erent sample sizes included in the estimation procedure.

The evidence reported graphically and through the statistics suggest that the generating process
of the volatility series is spurious memory, except for Chile, whose evidence against spurious memory
is weak. Despite the results of these statistics being mixed, all series reject the hypothesis of true
long memory at least for some of the statistics. Moreover, the graphics contain su¢ cient information
on the spurious memory behavior, as if the case were to be true long memory, ideally these graphs
would not present variation in their argument.
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The results of this study suggest that in reality, the long memory that is usually found would
rather be associated with spurious memory, which could be due to the presence of structural breaks
more that true long memory. Though this paper takes a testing approach, there are other routes
to respond to the research question and which incorporate the possibility of structural breaks to
explain the long memory present in the volatility series, especially from an econometric modeling
approach that is now underway for Peru and a group of Latin American countries.
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Table 1. Summary Statistics of Series

Mean SD Max Min Skew Exc. Kur JB

Returns: rt= log(P t=P t�1)

Peru 0.002 0.017 0.144 -0.133 0.519� 8.149� 16,788�

Brazil 0.002 0.028 0.345 -0.395 -0.036 28.018� 177,932�

Mexico 0.001 0.016 0.121 -0.143 -0.020 6.633� 9,127�

Chile 0.001 0.012 0.118 -0.077 0.232� 5.382� 6,054�

Argentina 0.002 0.033 0.329 -0.757 -0.576� 53.477� 757,120�

S&P500 0.000 0.011 0.110 -0.229 -1.209� 27.974� 257,010�

Volatility: log(jrtj+ 0:001)

Peru -4.863 0.949 -1.932 -6.908 -0.023 -0.382� 36.928�

Brazil -4.392 0.973 -0.927 -6.908 -0.255� -0.174� 65.642�

Mexico -4.802 0,893 -1.937 -6.908 -0.164� -0.393� 54.411�

Chile -4.992 0.844 -2.128 -6.908 -0.156� -0.464� 81.209�

Argentina -4.409 1.086 -0.277 -6.908 -0.244� -0.178� 71.393�

S&P500 -5.093 0.839 -1.470 -6.908 0.000 -0.445� 64.445�

�SD�, �Skew�, �Exc. Kur�and �JB�stand for standard deviation, skewness, excess kurtosis and Jarque Bera,

respectively. * denotes signi�cance at 1%.
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Table 2. ARCH and Long Memory Statistics for Volatility Series

ARCH(20) ARCH (50) Q(20) Q(50) H-M R/S Lo R/S bd ed
Peru 46.421 18.410 4096 6527 8.624 3.861 0.333 0.331

Brazil 32.140 14.049 3296 6516 8.863 4.152 0.464 0.404

Mexico 22.100 10.121 1662 2963 6.180 3.213 0.353 0.427

Chile 28.441 12.102 2024 2962 6.187 3.187 0.301 0.347

Argentina 46.188 19.601 4392 8460 9.260 4.204 0.402 0.420

S&P500 42.339 19.102 3318 6870 7.899 3.988 0.345 0.430

Statistics are signi�cant at 1%.
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Table 3. ARFIMA Models for Volatility Series

Peru Brazil Mexico Chile Argentina S&P500

d 0.341 0.405 0.414 0.346 0.462 0.461

(0.028) (0.033) (0.041) (0.033) (0.039) (0.036)

� -4.854 -4.350 -4.801 -4.981 -4.444 -5.082

(0.193) (0.286) (0.284) (0.161) (0.689) (0.445)

� 0.229 0.179 0.336 0.359 0.252 0.222

(0.083) (0.033) (0.032) (0.045) (0.027) (0.021)

� -0.409 -0.581 -0.683 -0.576 -0.662 -0.699

(0.096) (0.047) (0.039) (0.056) (0.041) (0.031)

Log Likelihood -7,613 -7,135 -6,235 -7,450 -9,003 -9,224

AIC 2.552 2.625 2.508 2.393 2.837 2.359

Jarque Bera 179.95 464.81 229.52 337.11 69.641 196.56

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH(1) 50.639 5.056 5.306 4.120 379.02 24.699

(0.000) (0.024) (0.021) (0.042) (0.000) (0.000)

Q-Portmanteau 83.376 69.743 90.270 65.645 117.850 95.675

(0.213) (0.486) (0.030) (0.771) (0.002) (0.201)

For parameters, standar desviations are given in parenthesis. For tests, p-values are given in parenthesis.
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Table 4. Results for FIGARCH, FIEGARCH and FIAPARCH Models

Peru Brazil Mexico Chile Argentina S&P500

Conditional Mean

d 0.116 0.113 0.285 - - - - - -

(0.015) (0.014) (0.042)

� - - - 0.001 0.001 0.001 0.001 0.001 0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

� - - 0.554 0.037 0.092 0.096 0.238 0.054 -

(0.038) (0.013) (0.014) (0.014) (0.013) (0.012)

� 0.152 0.164 -0.809 - - - - - -

(0.019) (0.018) (0.022)

Conditional Variance

d 0.477 0.021 0.565 0.587 0.505 0.337 0.438 0.471 0.546

(0.043) (0.008) (0.073) (0.068) (0.066) (0.046) (0.046) (0.048) (0.068)

w - 12.469 0.125 0.118 0.041 - 0.066 0.264 -

(0.032) (0.034) (0.031) (0.015) (0.013) (0.051)

� - - 0.089 0.091 0.227 0.253 - - 0.177

(0.043) (0.039) (0.047) (0.064) (0.030)

� 0.217 0.917 0.578 0.602 0.625 0.510 0.254 0.365 0.695

(0.049) (0.009) (0.085) (0.072) (0.072) (0.082) (0.053) (0.058) (0.052)


 - -0.026 - - - 0.563 - - -

(0.012) (0.101)

� - 0.432 - - - - - - -

(0.030)

� - - - - - 1.765 - - -

(0.081)

Standard desviations are given in parenthesis.
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Table 5. Statistics for FIGARCH, FIEGARCH and FIAPARCH Models

Peru Brazil Mexico Chile Argentina S&P500

Log Likelihood 17893 17950 13451 13419 14528 14579 19909 15180 25592

AIC -5.992 -6.012 -4.942 -4.931 -5.833 -5.853 -6.388 -4.779 -6.540

Jarque Bera 1332 1332 647 569 1235 1230 203 6527 15352

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARCH(1) 0.670 0.048 1.017 1.176 0.748 0.200 0.174 4.898 17.407

(0.406) (0.826) (0.313) (0.278) (0.387) (0.654) (0.677) (0.027) (0.000)

Q(50) 78.534 80.152 51.628 110.000 45.559 46.129 88.869 86.362 76.454

(0.005) (0.003) (0.334) (0.000) (0.532) (0.590) (0.000) (0.001) (0.009)

p-values are given in parenthesis.
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Table 6. Test Statistics Against Spurious Long Memory

W (� = 2%) W (� = 5%) Wc �� Zt td(1=2; 1; 4=5; 1) mean� td

Peru

(1990.01-2013.12) 1.242c 1.242b 3.797 0.204 -1.094 5.239a -0.217

Brazil

(1992.01-2013.12) 1.483b 1.297b 8.101b 0.757a 0.096 8.093a 0.485

Mexico

(1994.01-2013.12) 0.729 0.729 8.474b 0.409c -0.692 6.092a 0.848

(2004.01-2013.12) 0.826 0.826 1.281 0.236 -1.162 4.889a 0.693

Chile

(1989.01-2013.12) 0.484 0.484 0.810 0.272 -1.143 5.163a 0.459

(2005.01-2013.12) 1.113c 1.113 0.869 0.166 -1.365 4.761a -0.502

Argentina

(1988.04-2013.12) 1.295b 1.272b 9.526b 0.257 -1.078 8.235a -0.342

S&P500

(1980.01-2010.12) 1.481b 1.345b 12.916a 0.184 -1.324 8.205a 1.053b

a,b,c denote signi�cance at 1%, 5%, and 10% levels, respectively.

T-6



0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5 (a) Spectral density  for the Stock Returns
Peru
Mexico
Argentina

Brazil
Chile
S&P500

Peru
Mexico
Argentina

Brazil
Chile
S&P500

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

0.2

0.4

0.6

(b) Spectral density  for the Stock Returns Volatility

Peru
Mexico
Argentina

Brazil
Chile
S&P500

Figure 1. Spectral Density of Stock Returns and Stock Volatilities
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Figure 2. Autocorrelation Functions (ACF) for Stock Returns
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Figure 3. Autocorrelation Functions (ACF) for the Stock Returns Volatility
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Figure 4. Results for the Stock Returns Volatility of Peru
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Figure 5. Results for the Stock Returns Volatility of Brazil
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Figure 6. Results for the Stock Returns Volatility of Mexico
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Figure 7. Results for the Stock Returns Volatility of Chile
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Figure 8. Results for the Stock Returns Volatility of Argentina
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Figure 9. Results for the Stock Returns Volatility of S&P500
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Figure 10. Sequential Values of the test W for a Trimming of 5%. Horizontal axis means size of subsamples.

Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 10 (continues). Sequential Values of the test W for a Trimming of 5%. Horizontal axis means size of

subsamples. Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 11. Sequential Values of the test W for a Trimming of 2%. Horizontal axis means size of subsamples.

Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 11 (continues). Sequential Values of the test W for a Trimming of 2%. Horizontal axis means size of

subsamples. Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 12. Sequential Values of the test W for a Trimming of 5%. Horizontal axis means size of subsamples.

Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 12 (continues). Sequential Values of the test W for a Trimming of 5%. Horizontal axis means size of

subsamples. Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.

F-15



Figure 13. Sequential Values of the test W for a Trimming of 2%. Horizontal axis means size of subsamples.

Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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Figure 13 (continues). Sequential Values of the test W for a Trimming of 2%. Horizontal axis means size of

subsamples. Horizontal solid and dotted lines indicates critical values at 10% and 5%, respectively.
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