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Modeling Latin-American Stock Markets Volatility: Varying
Probabilities and Mean Reversion in a Random Level Shifts Model

Gabriel Rodríguez
Ponti�cia Universidad Católica del Perú

Abstract

Following Xu and Perron (2014), we applied the extended RLS model to the daily stock market
returns of Argentina, Brazil, Chile, Mexico and Peru. This model replaces the constant probability
of level shifts for the entire sample with varying probabilities that record periods with extremely
negative returns; and furthermore, it incorporates a mean reversion mechanism with which the
magnitude and the sign of the level shift component will vary in accordance with past level shifts
that deviate from the long-term mean. Therefore, four RLS models are estimated: the basic RLS,
the RLS with varying probabilities, the RLS with mean reversion, and a combined RLS model
with mean reversion and varying probabilities. The results show that the estimated parameters
are highly signi�cant, especially that of the mean reversion model. An analysis is also performed
of ARFIMA and GARCH models in the presence of level shifts, which shows that once these
shifts are taken into account in the modeling, the long memory characteristics and GARCH e¤ects
disappear. Our forecasting analysis con�rms that the RLS models are more accurate than other
classic long-memory models.
KeyWords: Random Level Shifts Model, Volatility, Long Memory, GARCH, Latin-American
Stock Markets, Varying Probabilities, Mean Reversion, Forecasting.
JEL Classi�cation: C22, C52.

Resumen

Siguiendo el trabajo de Xu y Perron (2014), en este documento se aplica el modelo extendido de
cambios de nivel aleatorios (RLS) a los retornos diarios de los mercados bursátiles de Argentina,
Brasil, Chile, Mexico y Perú. A diferencia del modelo RLS básico, en este modelo se usan prob-
abilidades cambiantes asociadas a periodos de retornos extremadamente negativos y además se
incorpora un mecanismo de reversión a la media el cual depende de los cambios de nivel pasados y
de las desviaciones de la media de largo plazo. Así, se estiman cuatro modelos de cambios de nivel
aleatorios: el modelos RLS básico, el modelo RLS con probabilidades variantes, el modelo RLS con
reversión a la media y �nalmente, el modelo RLS que combina los dos aspectos ya mencionados.
Los resultados muestran que los coe�cientes estimados son signi�cativos, en especial cuando se usa
el modelo RLS con reversión a la media. Asimismo, se realizan estimaciones de modelos ARFIMA
y GARCH a las series de volatilidad a las cuales se le ha sustraído el componente de cambios de
nivel. Los resultados, muestran que una vez que dichos componentes son tomados en cuenta, las
características de larga memoria y efectos GARCH desaparecen. Finalmente, un análisis de predic-
ción es proporcionado el cual con�rma que los modelos RLS son más e�cientes que otros modelos
clásicos de larga memoria.
Palabras Claves: Modelo con Cambios de Nivel Aleatorios, Volatilidad, Larga Memoria, GARCH,
Mercados Bursátiles de América Latina, Probabilidades Variantes, Reversión a la Media, Predic-
ción.
Classi�cación JEL: C22, C52.



Modeling Latin-American Stock Markets Volatility: Varying
Probabilities and Mean Reversion in a Random Level Shifts

Model1

Gabriel Rodríguez2

Ponti�cia Universidad Católica del Perú

1 Introduction

Typically, the volatility of �nancial series exhibits long-term dependence or long memory. This
property is represented in the domain of time by the behavior of its autocorrelation function (ACF),
which presents signi�cantly di¤erent values from zero up to a large number of lags, indicating
hyperbolic decay. In the domain of frequencies a peculiar behavior can also be observed which is
given by the higher weight of the low frequencies in the spectral density, and a rapid growth in this
function can be observed as the frequencies approach the origin. Several authors document this
characteristic; see Taylor (1986), Ding et al. (1993), Dacorogna et al. (1993), Robinson (1994),
among others.

Formally, the long memory property is de�ned in a time series that has an ACF that slowly
decays in its lags or, equivalently, if its spectral density function has an in�nite value at the zero
frequency. There are several possible formalizations for this de�nition; see McLeod and Hipel
(1978), Robinson (1994), Beran (1994) and Baille (1996), among others. We follow the de�nitions
presented in Perron and Qu (2010). Let fxtgTt=1 be a stationary time series with spectral density
function fx(!) at frequency !, so xt has long memory if fx(!) = g(!)!�2d, for ! ! 0; where
g(!) is a function of smooth variation in a vicinity of the origin, which means that for all real
numbers t, it is veri�ed that g(t!)=g(!)! 1 for ! ! 0. When d > 0, the spectral density function
increases for frequencies increasingly close to the origin. The divergent in�nite rate depends on the
value of parameter d. On the other hand, let 
x(�) be the ACF of xt, so xt has long memory if

x(�) = c(�)�

2d�1, for � ! 1; where c(�) is a function of smooth variation. When 0 < d < 1=2
the ACF decreases at a slow rate of decay that depends on the value of parameter d3.

Granger and Joyeux (1980) were the �rst to formulate the notion of fractional integration in
terms of an in�nite �lter corresponding to the expansion of (1� L)d, where L is the lag operator.
Hosking (1981) generalizes the autoregressive integrated moving average processes by allowing the
degree of integration d to take fractional values, and this model is known as ARFIMA(p,d,q). The
fractional integration processes have long memory when 0 < d < 0:5: On the other hand, if �0:5 <
d < 0:5 the series is stationary. Geweke and Porter-Hudak (1983), based on a linear regression of
the log-periodogram with a deterministic regressor, show that the asymptotic distribution of the
long memory parameter d has a Normal distribution; see also Robinson (1995).

1This document has been produced during the period earned as Research Professor 2014. I thank excellent research
assistance of Junior Ojeda Cunya and also support from the Department of Economics, Ponti�cia Universidad Católica
del Perú. Useful comments from participants at the Viernes Económico (PUCP), the Spanish Economic Symposium
(Palma de Mallorca, Spain), and Jorge rojas (PUCP) are acknowledged.

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Ponti�cia Universidad Católica del
Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail
Address: gabriel.rodriguez@pucp.edu.pe.

3These de�nitions in the domain of frequency and time are equivalent if certain general conditions are veri�ed, in
accordance with the �ndings in Beran (1994).

1



Baillie, Bollerslev and Mikkelsen (1996) propose the FIGARCH model. In this model, the
presence of the fractional integration allows an explanation and a representation of the temporary
dependences in the volatility of the �nancial markets. Bollerslev and Mikkelsen (1996) propose
the FIEGARCH model. In both cases, the fractional parameter is signi�cant and asymmetries are
identi�ed in the series.

Ding, Granger and Engle (1993) �nd that the ACF of the absolute value of the returns is greater
than the correlation of the returns. Thus, the speci�cation jrtjd exhibits a large correlation between
very distant lags, especially when d = 1: Through the Monte Carlo method it is shown that the
ARCH model with squared returns and absolute value returns possess the long-memory property.
Finally, the authors propose the APARCH model (asymmetric power GARCH) which allows an
estimation of the long-memory parameter in the volatility and the asymmetric power.

Lobato and Savin (1998) apply a semiparametric test, which is robust when there is weak
dependence, to detect the presence of long memory in the daily returns on the S&P500 market
and in squared returns. For the level of stock returns the null hypothesis of short memory is
not rejected, while for the squared stock returns and the absolute value of the returns the null
hypothesis is rejected. However, the authors argue that the results obtained may be spurious: due
to the non-stationarity of the series in the squared stock returns, and due to aggregation in the
absolute value of the returns. Finally, by dividing the sample into two periods and taking January
1973 as the breakpoint, no evidence is found of structural change causing the long memory.

At present, the literature argues that it could be structural changes that bring about long
memory. Thus, the estimates and conclusions on �nancial returns and their modeling as long
memory would be biased. In studies such as that of Perron (1989, 1990) it is shown that when a
stationary process is contaminated with structural breaks, the sum of the autoregressive coe¢ cients
is biased to the unit. Teverovsky and Taqqu (1997), using the daily returns of the Center for
Research in Security Prices (CRSO) for the period 1962-1987, present a method for distinguishing
between the e¤ects of level shifts and the e¤ects of long memory.

Gourieroux and Jasiak (2001) evaluate the relationship between the presence of infrequent
breaks and long memory based on the correlogram estimation instead of estimating the fractional
parameter. The authors �nd that non-linear time series with infrequent breaks could have long
memory. Therefore, these series and not the fractionally integrated processes with i:i:d: innovations
would cause the hyperbolic decay of the autocorrelogram.

On the other hand, Diebold and Inoue (2001) argue that long memory and structural changes are
related through the following models: the simple mixture permanent stochastic breaks of Engle and
Smith�s (1999) and the Markov-Switching model of Hamilton (1989). The authors show analytically
that stochastic regime shifts are easily confused with long memory, even asymptotically, provided
that the probabilities of structural breaks are small. The Monte Carlo simulations attest to the
relevance of the �nite samples theory, and make it clear that the confusion is not only a theoretical
matter, but a real possibility in empirical economic and �nancial applications.

Granger and Hyung (2004), for their part, show that the slow decay in the ACF and other
properties of the fractionally integrated models are caused by occasional breaks. Analytically, the
authors show that not taking the breaks into consideration causes the presence of long memory in
the ACF and that the fractional parameter estimated with the Geweke and Porter-Hudak method
(1983) is biased. Then, empirically, the structural break model and the fractional integration
models are compared to analyze the absolute value of the daily S&P500 stock returns from 1928
to 2002. The results show that the presence of long memory could be caused by not having taken
the breaks in the series into consideration.
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Mikosch and St¼aric¼a (2004a) provide the theoretical base to explain the stylized facts observed
in the logarithm of returns: the long-range dependence in the volatility and the integrated GARCH
(IGARCH) if it assumed that the date is not stationary. The simulations allow an appreciation
that the time series with changing unconditional variance produce estimates of the long-memory
parameter d that could be erroneously interpreted as evidence of long memory under the assumption
of stationarity. There is evidence that the characteristic of long-range dependence is caused by
feasible structural changes in the logarithm of stock returns.

Mikosch and St¼aric¼a (2004b) propose a goodness-of-�t test that shows the similarity between
the spectral density of a GARCH process and the logarithm of stock market returns. Applying the
test to the S&P 500 data from 1928 to 1991, changes are detected in the structure of data related
to changes in the unconditional variance. These changes would induce long-range dependence in
the ACF of absolute value stock market returns; see also Granger and St¼aric¼a (2005).

A recent study on the analysis of long memory and level shifts, or structural shifts, is that of
Perron and Qu (2010). The authors present a method to distinguish between long memory and
level shifts using the ACF, the periodogram and the fractional integration parameter d. Perron and
Qu (2010) propose a simple mixture model that combines a short memory process and a component
that re�ects the level shifts, determined by an occurrence variable related to a Bernouilli process.
Applying this method to the log-squared returns of four indices (S&P 500, NASDAQ, AMEX and
Dow Jones), they conclude that the model that best describes the volatility of the returns is that
which considers a short memory process with random level shifts.

Lu and Perron (2010) and Li and Perron (2013) use the model with random level shifts (RLS)
to model the volatility of stock market and exchange rate returns, respectively. Empirical studies
applied to �nancial series in Latin America are scanty. The RLS model has recently been applied
by Ojeda Cunya and Rodríguez (2014) to explain stock market and exchange rate volatility in Peru,
and by Rodríguez and Tramontana Tocto (2014) to analyze the behavior of stock market volatilities
in a sample of Latin American countries. In this study, we follow the expanded RLS model of Xu
and Perron (2014) applied to the volatility of stock market returns of Argentina, Brazil, Chile,
Mexico and Peru by taking two aspects into account: (a) replacing the constant probability of level
shifts for the entire sample with varying probabilities that record periods with extremely negative
returns; and (b) incorporating a mean reversion mechanism with which the magnitude and the sign
of the level shift component will vary in accordance with past level shifts that deviate from the
long-term mean. Four RLS models are estimated: basic RLS, RLS with varying probabilities, RLS
with mean reversion, and a combined RLS model with mean reversion and varying probabilities.
The results show that the estimated parameters are highly signi�cant, especially that of the mean
reversion model. An analysis is also performed of ARFIMA and GARCH models in the presence
of level shifts, which shows that once these shifts are taken into account in the modeling, the long
memory characteristics and GARCH e¤ects disappear. Our prediction analysis con�rms that the
RLS models are more accurate than other classic long-memory models.

The paper is structured as follows. Section 2 presents the basic RLS model and describes
the two modi�cations to that model, and describes the estimation method. Section 3 presents
the data and the results of the estimation of the di¤erent models. Moreover, a comparison with
the ARFIMA(p,d,q), GARCH and CGARCH models is presented. Section 4 shows the prediction
results, while Section 5 discusses the main conclusions.
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2 Methodology

This Section presents the basic RLS model that considers a constant probability of level shifts.
Then, the two extensions to this model are presented and the details of the estimation algorithm
are brie�y described.

2.1 The Basic RLS Model

We use a simple mixture model, which is a combination of a short memory process and a level shift
component that depends on a Binomial distribution. Following Lu and Perron�s notation (2010),
the RLS is speci�ed as follows:

yt = a+ � t + ct; (1)

� t = � t�1 + �t;

�t = �t�t;

where a is a constant, � t is the level-shift component, ct is the short-memory component, and �t is a
Binomial variable, which takes the value of 1 with probability � and the value of 0 with probability
(1��). In this way, following the third expression in (1), when �t assumes the value of 1, a random
level shift �t occurs with a distribution �t � i:i:d: N(0; �2�). The short-memory process (in its
general form) is de�ned by the process ct = C(L)et, with et � i:i:d: N(0; �2e) and Ejetjr < 1 for
values r > 2, where C(L) =

P1
i=0 ciL

i;
P1
i=0 ijcij <1 and C(1) 6= 0. Moreover, it is assumed that

�t, �t and ct are mutually independent. Based on the results of Lu and Perron (2010) and Li and
Perron (2013), even when it would be useful to consider the component et as a random variable
(noise), in this paper we model this component as an AR(1) process, that is, ct = �ct�1 + et4.

Note that the process �t can be described as �t = �t�1t + (1� �t)�2t, with �it � i:i:d:N(0; �2�i)
for i = 1; 2 and �2�1 = �2�; �

2
�2
= 0. The �rst-di¤erences model, with the aim of eliminating

the autoregressive process of the level shift component, depends solely on the Binomial process:
�yt = � t � � t�1 + ct � ct�1 = ct � ct�1 + �t, and moving to the state-space form, the mean and
transition equations are obtained, respectively: �yt = ct � ct�1 + �t, ct = �ct�1 + et. In matrix

form �yt = HXt + �t and Xt = FXt�1 + Ut are obtained, where Xt = [ct; ct�1], F =

24� 0

1 0

35,
H = [1;�1]0 . In this case, the �rst row of the matrix F shows the coe¢ cient � of the autoregressive
part of the short-memory component. Moreover, U is a Normally distributed vector of dimension 2

with mean 0 and variance: Q =

24�2e 0

0 0

35. In comparison with the standard state-space model, the
important di¤erence in the current model is that the distribution of �t is a mixture of two Normal
distributions with variance �2� and 0, occurring with probabilities � and 1� �, respectively5.

4We opted for an AR(1) speci�cation but if the coe¢ cient � is statistically insigni�cant, ct = et. Estimates
with longer lags for the AR process showed no signi�cance of the respective parameters. This is consistent with the
statements by the RLS model because if the persistence or long memory in the volatility of the series analyzed is
mainly explained by rare or sporadic level shifts, then the short-memory component contains little persistence or it
is a noise. This justi�es ct is modeled as a noise or maximum as an AR (1) process.

5Note that this model can be extended to model the short-memory component as an ARMA(p,q) process. However,
the estimates show no statistical signi�cance beyond an AR(1) process.
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The model described above is a special version of the models included in Wada and Perron
(2006) and Perron and Wada (2009). In this case, there are only shocks that a¤ect the level of the
series, and the restriction is imposed that the variance of one of the components of the mixture
of distributions is zero. The basic input for the estimation is the increase in the states through
the realizations of the mixture at time t so that the Kalman �lter can be used to construct the
likelihood function, conditional to the realizations of the states. The latent states are eliminated
from the �nal expression of the likelihood by summing over all the possible realizations of the
states. In consequence, despite its fundamental di¤erences, the model takes a structure that is
similar to that of Hamilton�s Markov-Switching model (1994)6. Let Yt = (�y1; :::;�yt) be the
vector of observations available at time t and denote the vector of parameters by � = [�2�; �; �

2
e; �].

Adopting the notation used in Hamilton (1994), 1(:) represents a vector of ones of dimension

(4 � 1), the symbol � denotes element-by-element multiplication, b�ijtjt�1 = vec(e�tjt�1) with the
(i; j)th element of e�tjt�1 being Pr(st�1 = i; st = jjYt�1; �) and !t = vec(e!t) with the (i; j)th
element of e!t being f(�ytjst�1 = i; st = j; Yt�1; �) for i; j 2 f1; 2g. Thus, we have st = 1 when
�t = 1, that is, a level shift occurs. Using the same notation as Lu and Perron (2010), the
logarithm of the likelihood function is ln(L) =

PT
t=1 ln f(�ytjYt�1; �), where f(�ytjYt�1; �) =P2

i=1

P2
j=1 f(�ytjst�1 = i; st = j; Yt�1; �) Pr(st�1 = i; st = jjYt�1; �) � 10(b�tjt�1�!t). By applying

rules of conditional probabilities, Bayes�s rule and the independence of st with respect to past

realizations, we obtain e�kitjt�1 = Pr(st�2 = k; st�1 = ijYt�1; �). The evolution of b�tjt�1 can be
expressed as: 26666664

e�11t+1jte�21t+1jte�12t+1jte�22t+1jt

37777775 =
26666664

� � 0 0

0 0 � �

1� � 1� � 0 0

0 0 1� � 1� �

37777775

26666664
e�11tjte�21tjte�12tjte�22tjt

37777775 , (2)

which is equal to b�t+1jt = �b�tjt with b�tjt = (b�tjt�1�!t)
10(b�tjt�1�!t) . Note that thus far the model includes

the probabilities of level shift (�) as constant. Thus, once the speci�c estimate of � is obtained,
a possible change is the use of a smoothed estimate of the level shift component � t. However, in
the present context of abrupt structural shifts, the conventional smoothers may perform poorly. In
place of this, we use the model proposed by Bai and Perron (1998, 2003) to obtain the dates on
which the level shifts occur, as well as the means (averages) within each segment. Indeed, we use
the estimation of � to obtain an estimate of the number of level shifts, and the Bai and Perron
method (1998, 2003) to obtain estimates of the break dates that globally minimize the following

sum of squared residuals:
m+1X
i=1

TiX
t=Ti�1+1

[yt��i]2, wherem is the number of breaks, Ti (i = 1; 2; :::;m)

are the break dates T0 = 0, and Tm+1 = T and �i (i = 1; 2; :::;m + 1) are the means (averages)
inside each regime, which can be estimated once the date breaks have been estimated or known .
This method is e¢ cient and can handle a large number of observations; see Bai and Perron (2003)
for further details7.

6 In comparison with Hamilton�s Markov-Switching model (1989), this model does not limit the magnitude of the
level shifts, so any number of regimes is possible. Moreover, the probability 0 or 1 does not depend on past events,
unlike the Markov model.

7Note that because the model permits consecutive level shifts, we set the minimum length of a segment at only
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In consequence, the conditional likelihood function for �yt corresponds to the following Normal

density: e!ijt = f(�ytjst�1 = i; st = j; Yt�1; �) =
1p
2�
jf ijt j�1=2 exp(�

vij
0

t (f ijt )
�1=2vijt
2 ), where vijt is

the prediction error and f ijt is its variance, and these terms are de�ned as: vijt = �yt ��yitjt�1 =
�yt�E[�ytjst = i; Yt�1; �], and f ijt = E(v

ij
t v

ij0

t ). The best predictions for the state variable and its
respective conditional variance in st�1 = i are Xi

tjt�1 = FX
i
t�1jt�1, and P

i
tjt�1 = FP

i
t�1jt�1F

0 +Q,
respectively.

The mean equation is �yt = HXt+ �t; where the error �t has a mean 0 and a variance that can
take values R1 = �2� with probability � or R2 = 0 with probability (1��). Thus, the prediction error
is vijt = �yt�HXi

tjt�1 and its variance is f
ij
t = HP

i
tjt�1H

0+Rj . In this way, given that st = j and

st�1 = i and using updating formulas, Xi
tjt = X

i
tjt�1+P

i
tjt�1H

0(HP itjt�1H
0+Rj)�1(�yt�HXi

tjt�1)

and P ijtjt�1 = P itjt�1 � P
i
tjt�1H

0(HP itjt�1H
0 + Rj)�1HP itjt�1 are obtained. In order to reduce the

dimensionality problem in the estimation, Lu and Perron (2010) use the re-collapsing procedure
posed by Harrison and Stevens (1976). In so doing, e!ijt is una¤ected by the history of the states
before time t � 1. We have four possible states corresponding to St = 1 when (st = 1; st�1 = 1),
St = 2 when (st = 1; st�1 = 2), St = 3 when (st = 2; st�1 = 2) and St = 4 when (st = 2; st�1 = 2)
and the matrix � is de�ned as (2). Taking the de�nitions of e!t, b�tjt, b�t+1jt, the set of conditional
probabilities and the one-period forward predictions, the same structure as a version of Hamilton�s
Markov model (1994) is obtained. However, the EM algorithm cannot be used. This is because
the mean and the variance in the conditional density function are non-linear functions of the
parameters � and of past realizations f�yt�j ; j � 1g. Likewise, the conditional probability of being
in a determined regime b�tjt is inseparable from the conditional densities e!t. For further details, see
Lu and Perron (2010), Li and Perron (2013), and Wada and Perron (2006).

2.2 Extensions to the Basic RLS Model

As pointed out in Xu and Perron (2014) and in the results of Ojeda Cunya and Rodríguez (2014) and
Rodríguez and Tramontana Tocto (2014), level shifts usually occur in clusters in certain periods of
time related to �nancial crisis and, in the case of the exchange rate, with exchange rate intervention
measures by the Central Bank 8. This phenomenon of clustering indicates that level shifts are not
i:i:d:, but that the probability of these shifts varies in accordance with economic, political, and
social conditions in the country.

Following on from the notation used in Xu and Perron (2014), the probability of level shift is
de�ned as pt = f(p; xt�1); where p is a constant and xt�1 are the covariables that help to better
predict the probability of level shifts. According to the study by Martens, van Dijk and de Pooter
(2004), there is a strong relationship between current volatility and past returns, also known as the
leverage e¤ect. This e¤ect will be modeled through the news impact curve proposed by Engle and
Ng (1993) as follows: log(�2t ) = �0 + �11(rt�1 < 0) + �2jrt�1j1(rt�1 < 0), where �2t represents the
volatility and 1(A) is the indicator function that takes the value of one when the event A occurs.
Given that our objective in this part of the study is not to model the volatility but the probability
of level shifts, the variable xt�1 will not be represented by past returns (rt�1). Instead, extreme
past returns that are below a threshold � will be used. Therefore, we will employ the returns that
belong to 1%, 2.5% and 5% of the distribution of the returns (� = 1:0%; 2:5%; 5:0%). Thus, the

one observation.
8This is investigated in Gonzáles Tanaka, Ojeda Cunya and Rodríguez (2015).
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probability of level shifts will be given by:

f(p; xt�1) =

8<: �(p+ 
11 fxt�1 < 0g+ 
21 fxt�1 < 0g jxt�1j) for jxt�1j > �

�(p) other cases,

9=; ; (3)

where �(:) is a function of Normal accumulated distribution, with which we ensure that f(p; xt�1)
is between 0 and 1.

The second observation of the afore-mentioned studies is that level shifts occur around a mean;
that is, each time a level shift occurs and the volatility of the series increases, a similar change
occurs in the opposite direction, which makes the mean of the volatility remain at a given value.
This process of mean reversion is modeled as follows: �1t = �(� tjt�1 � � t) + e�1t; where e�1t is
distributed Normally with mean 0 and variance �2�, � tjt�1 is the estimated level shift component
at time t, and � t is the mean of all level-shift components estimated from the start of the sample
to time t. The process of mean reversion occurs when � < 0 and this parameter will represent
the velocity at which the volatility returns to its mean. The �nal model combines the two stated
characteristics, giving us four models to estimate.

2.3 Estimation Method

The estimation method is based on the work of Xu and Perron (2014), which is an extension of the
basic RLS model by Lu and Perron (2010) and Li and Perron (2013). The �rst di¤erence compared
with the basic model is that the vector of parameters is di¤erent: � = [�2�; p; �

2
e; �; 
1; 
2; �]

9. The
second important di¤erence is that, given the probability of level shifts is now varying, the equation
(2) is replaced by:26666664

e�11t+1jte�21t+1jte�12t+1jte�22t+1jt

37777775 =
26666664

pt+1 pt+1 0 0

0 0 pt+1 pt+1

(1� pt+1) (1� pt+1) 0 0

0 0 (1� pt+1) (1� pt+1)

37777775

26666664
e�11tjte�21tjte�12tjte�22tjt

37777775 : (4)

Therefore, the conditional likelihood function for �yt follows the Normal density: e!ijt =

f(�ytjst�1 = i; st = j; Yt�1; �) = 1p
2�
jf ijt j�1=2 exp(�

vij
0

t (f ijt )
�1=2vijt
2 ); where vijt is the prediction error

and f ijt is its variance and is de�ned as: v
ij
t = �yt��y

ij
tjt�1 = �yt�E[�ytjst = i; st�1 = j; Yt�1; �]

and f ijt = E(vijt v
ij0

t ). Note that �yijtjt�1 depends only on the information contained in t � 1.
The predictions for the variable of state and its respective conditional variance to st�1 = i are:
Xi
tjt�1 = FX

i
t�1jt�1 and P

i
tjt�1 = FP

i
t�1jt�1F

0+Q. Our mean equation is �yt = HXt+�t; where the

error �t has zero mean and a variance that can take values R1 = �2� or values R2 = 0, so our predic-

tion error will be vijt = �yt�HXi
tjt�1 and will be associated with a variance f

ij
t = HP

i
tjt�1H

0+Rj .

Then, given st = j and st�1 = i and using the updating formula we get: Xij
tjt = Xi

tjt�1 +

9This vector of parameters corresponds to the model that contains the two extensions. In the case of the RLS
model only with varying probabilities, the vector of parameters is � = [�2�; p; �

2
e; �; 
1; 
2], while in the case of the

RLS model with mean reversion, the vector of parameters is � = [�2�; p; �
2
e; �; �].
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P itjt�1H
0(HP itjt�1H

0 + Rj)�1(�yt �HXi
tjt�1), P

ij
tjt = P

i
tjt�1 � P

i
tjt�1H

0(HP itjt�1H
0 + Rj)�1HP itjt�1.

As in Perron and Wada (2009) we will reduce the estimation problem by using the re-collapsing

process proposed by Harrison and Stevens (1976): Xi
tjt =

P2
i=1 Pr(st�1=i;st=jjYt;�)X

ij
tjt

Pr(st=jjYt;�) =

P2
i=1

e�ijtjtXij
tjtP2

i=1
e�ijtjt

and P itjt =
P2
i=1 Pr(st�1=i;st=jjYt;�)[P

ij
tjt+(X

i
tjt�X

ij
tjt)(X

i
tjt�X

ij
tjt)

0]

Pr(st=jjYt;�) =

P2
i=1

e�ijtjt[P ijtjt+(Xj
tjt�X

ij
tjt)(X

j
tjt�X

ij
tjt)

0]P2
i=1

e�ijtjt .

For the model of mean reversion, certain modi�cations are necessary. The prediction er-
ror vijt of the previous expressions is no longer Normally distributed with mean 0 and vari-
ance that depends on the value of the state, but is modeled as: yt = a + ct + � t, �yt =
� t� � t�1+ ct� ct�1, � t� � t�1 = �t[�(� tjt�1� � t)+e�1t]+(1��t)�2t. Moreover, e!ijt = f(�ytjst�1 =
i; st = j; Yt�1; �) =

1p
2�
jf ijt j�1=2 exp(�

evij0t (f ijt )
�1=2evijt
2 ), evijt =

8>>>>>><>>>>>>:

v11t � �(�11tjt�1 � �
11
t )

v12t

v21t � �(�21tjt�1 � �
21
t )

v22t

9>>>>>>=>>>>>>;
and f ijt =

E(evijt evij0t ) = HP itjt�1H 0 +Rj . Further details appear in Xu and Perron (2014).

3 Empirical Results

3.1 The Data

To apply and estimate the parameters of the models set out above we use �ve daily time series: those
corresponding to the IGBVL index (Peru), from 03/01/1990 to 13/06/2013 (5832 observations),
the MERVAL index (Argentina) from 04/08/1988 to 13/06/2013 (6142 observations), the IBOV
(Brazil) from 02/01/1992 to 13/06/2013 (5303 observations), the IPSA (Chile) from 02/01/1989
to13/06/2013 (6098 observations) and the MEXBOL (Mexico) from 19/01/1994 to 13/06/2013
(4841 observations). The returns are calculated as rt = ln(Pt)� ln(Pt�1), where Pt are the values
presented for the �ve indices. Following recent literature (see Lu and Perron (2010), Li and Perron
(2010), Xu and Perron (2010), among others), we model log-absolute returns10. When returns
are zero or close to it, the log-absolute transformation implies extreme negative values. Using the
estimation method described in Section 2.1, these outliers would be attributed to the level shifts
component and thus bias the probability of shifts upward. To avoid this inconvenient, we bound
absolute returns away from zero by adding a small constant, i.e., we use yt = log(jrtj + 0:001), a
technique introduced to the stochastic volatility literature by Fuller (1996). The results are robust
to alternative speci�cations, for example using another value for this so-called o¤set parameter,
deleting zero observations, or replacing them by a small value. Another important comment is the
fact that we use daily returns as opposed to realized volatility series constructed from intra-daily
high-frequency data which has recently become popular. It is true that realized volatility series are
less noisy measure of volatility. However, it is problematic in the current context for he following

10Using this measure has two advantages: (i) it does not su¤er from a non-negativity constraint as do, for example,
absolute or squared returns. Actually, it is a similar argument as used in the EGARCH(1,1) model proposed by
Nelson (1991): the dependent variable is log(�2t ) in order to avoid the problems of negativity when the dependent
variable is �2t as in the standard GARCH models and other relatives models; (ii) there is no loss relative to using
square returns in identifying level shifts since log-absolute returns is a monotonic transformation. It is true that
log-absolute returns are quite noisy but it is not problematic since the algorithm used is robust to the presence of
noise.
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reasons: (i) such series are typically available for short span. Given the fact that the level shifts will
be relatively rare, it is imperative to have a long span of data in order to made reliable estimates
of the probability of occurrence of the level shifts; (ii) such series are available only for speci�c
assets as opposed to market indices. Because the goal of the RLS model is to allow for particular
events a¤ecting overall markets, using speci�c asset would confound such market-wide events with
idiosyncratic ones associated with the particular asset used; (iii) we are interested to re-evaluate
the adequacy of ARFIMA and GARCH models applied to daily returns when taking into account
the possibility of level shifts. Therefore, it is important to have estimates of these level shifts for
squared daily returns which are equivalent to those estimated using log-absolute returns.

Table 1 shows the main descriptive statistics of the returns and the volatility, and Figure 1
illustrates the behavior of the returns. It can be seen that these series move around a mean close
to zero and exhibit clusters in their distribution in time. This backs the modeling of varying
probabilities put forward in the previous section. For volatility, the asymmetry is very small and
ranges from -0.259 to -0.027. The kurtosis in all series is very close to 3 (2.578-2.827). Further
details on the stylized facts in Peru�s foreign exchange and stock markets can be found in Humala
and Rodríguez (2013).

On the other hand, Figure 2 shows the ACF of the volatility series. The persistent behavior
of the ACF is clearly observed, a stylized fact frequently found in the empirical literature that
suggests the existence of long memory or long range dependence.

3.2 Results of the Estimations

The estimations of the basic RLS model (Basic RLS), the model RLS with varying probabilities
(Threshold �% RLS), the RLS model with mean reversion (Mean reversion RLS) and the modi�ed
RLS with the two extensions (Modi�ed RLS) are shown in Tables 2, 3, 4 and 5, respectively.

The results presented in Table 2 show values that are slightly di¤erent to those that can be
appreciated in Rodríguez and Tramontana Tocto (2014) given the changes made to the sample of
Argentina and Brazil to remove very extensive non-trading periods in the respective markets due
to the problems of high in�ation undergone by those countries. What is observed is that for Chile,
Mexico and Peru, the autoregressive parameter of the short-memory component (�) is signi�cant,
and is not for Argentina and Brazil, which means that this series is modeled with a Normally
distributed short-memory process with 0 and variance �2e. This distinction is important because
this rule will be followed in the coming models where the modi�cations for the basic RLS are
introduced11.

Given the estimates of the level-shift probabilities (�) and the number of observations, the
number of breaks can be calculated in each of the markets. Thus, we have 49, 53, 49, 29 and
25 breaks or level shifts for Argentina, Brazil, Chile, Mexico and Peru, respectively12. Figure 3
shows the smoothed level component estimated by the algorithm (� t) along with estimates of the
level-shift component estimated using the method of Bai and Perron (1998, 2003). The shifts or
jumps in the mean seem to describe the behavior of the series well; see Rodríguez and Tramontana
Tocto (2014) for further explanation.

For Table 3, the parameters introduced in the estimation are 
1 and 
2; which refer to the
leverage or the news e¤ect, represented by the past returns in the volatility. Moreover, to estimate
11For Mexico, the parameter � is signi�cant at only 10%, due to which it is used only for the model with varying

probability and not for the mean reversion or modi�ed models, where it is insigni�cant.
12The results are the same as Rodríguez and Tramontana (2014), except for Argentina where the sample was

reduced a little.
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each series three threshold levels have been applied for the extremely negative returns; that is,
a given value � is taken, under which 1%, 2.5% and 5% of the returns are found. With respect
to the values of p, the estimated values in the varying probability model can be changed into
constant probabilities to make a comparison with the probabilities of the basic RLS model ���.
The estimates of � for Argentina are 0.004, 0.008 and 0.008 for 5%, 2.5% and 1% as thresholds,
respectively. For Brazil, the estimates are 0.005, 0.008, and 0.008 for the three threshold levels.
For Chile, these values are 0.031, 0.013 and 0.018 for the thresholds 5%, 2.5% and 1%. For Mexico,
the values are 0.029, 0.018 and 0.017. Finally, for Peru the estimates of p allow the probabilities of
0.0037, 0.0037 and 0.0045 to be obtained for the three respective thresholds. As can be seen, the
probability estimates obtained based on the estimation p give very similar results to those obtained
with the basic RLS model, as shown in Table 2, except for Chile.

The estimations are positive values for 
1 and 
2; with which the sense of the model is achieved
and the probability of level shift increases with extremely negative news. We observe that the
coe¢ cient 
2 is highly signi�cant for Brazil, Mexico and Peru. For Argentina, the signi�cant
coe¢ cient is 
1; which indicates that the new information or news has an important impact on the
probability of level shifts. For Chile�s volatility series, both 
1 and 
2 are not signi�cant, unless 
2
in the estimation with a threshold of 5%. Moreover, from estimates of pt the implicit probabilities
can be deduced, which allow the infrequency of level shifts to be a¢ rmed. Another notable fact
that can be seen in Table 3 is that as the threshold decreases from 5% to 1%, the value of 
2
decreases and becomes more signi�cant; that is, the standard error decreases, and conversely, the

1 acquires greater value and its signi�cance reduces.

Table 4 shows the model when the mean reversion mechanism is introduced. As we have seen in
the estimations, the parameter � is negative and signi�cant, which con�rms that a mean reversion
process exists in the �ve series. It can also be noted that the value of the probability of level
shifts is greater than in the basic RLS model. Moreover, the standard error of the level-shift
component decreases in relation to the basic RLS model, which owes to the fact that � absorbs
much of the volatility captured by the other model, which reduces in importance and even comes
to be insigni�cant, as is the case of Peru. The value of the mean reversion parameter is higher (in
absolute value) for Peru, at almost double what is observed for other countries.

Table 5 shows the estimations of the modi�ed RLS model. We observe that for Argentina,
Brazil and Peru, the estimates in Tables 3 and 4 are maintained; that is, only the parameter 
2
is signi�cant for Brazil and Peru, only 
1 is signi�cant for Argentina, and the parameter � is
signi�cant and negative for the three countries and is, as before, more negative for the case of
Peru. In Chile and Mexico a change to the estimated parameters is noted, given that for the �rst,
in Table 3 neither 
1 nor 
2 are signi�cant; however, in Table 5 we see that both parameters are
signi�cant. For Mexico, in Table 3 the parameter that was not signi�cant was 
1; conversely, with
the combined model this coe¢ cient becomes signi�cant.

To back up our numerical results, graphs were prepared that show the relationship between the
estimated level shifts and high volatility events in the market. Figure 4 shows the extreme past
returns (� = 1:0%) and the level shift component13 ;14. We observe that the periods of turbulence
on the markets corresponds with increases in the value of the level shifts component, which in the

13The level shift components estimated by the four models are very similar. We can opt to chart one of them.
However, Figure 3 shows the four level shifts estimates. The evidence is clear that all are very similar, which gives
rise to the superposition of the lines.
14Note that on modeling the probabilities as changing, it is not possible to use the algorithm of Bai and Perron

(1998, 2003).
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volatility series translates as periods with higher mean value. The greater (more negative) level
shifts almost always coincide with jumps in the smoothed component of the level shift. These
events are associated with domestic or foreign �nancial turbulence, as well as political elections
and social demands in the countries. A more detailed explanation can be found in Rodríguez and
Tramontana Tocto (2014) and Ojeda Cunya and Rodríguez (2014).

3.3 E¤ect of Level Shifts on Long Memory and ARFIMA Models

Figure 5 shows the ACF of the residuals of each of the four estimated RLS models. These results are
obtained as the di¤erence between the volatility series and the smoothed level component estimated
by the algorithm15. What is observed is a behavior that is totally di¤erent from that seen in Figure
2. Now there is no trace of persistence or long memory in the ACF of the di¤erent series. Note, in
addition, that the four models allow the same conclusion to be obtained16.

As in the work of Ojeda Cunya and Rodríguez (2014) and Rodríguez and Tramontana Tocto
(2014), here also an analysis involving the ARFIMA (0,d,0) and ARFIMA (1,d,1) models is pre-
sented, applied to the volatility and the short-memory process17. The results are set out in Table
6. In the case of the ARFIMA (0,d,0), the fractional parameter of the volatility is seen to �uctuate
between 0.152 and 0.221 and is signi�cant for all countries, which means that the series exhibits
long-memory behavior. However, on assessing the short-memory component, which re�ects the
inclusion of the level shifts, we see that in four of the �ve countries the parameter bd becomes nega-
tive, which indicates that the series no longer has long memory and that the autocorrelations decay
rapidly without past shocks having a prolonged e¤ect. For the Peruvian series the parameter bd is
positive, but is very close to zero and is insigni�cant, which shows that its value is zero and that it
does not have long memory.

The ARFIMA (1,d,1) model is also evaluated for volatility and short-memory process. In
the �ve countries it can be noted that the parameter bd; in comparison with the previous model,
increases in magnitude, re�ecting an even greater persistence (the values �uctuate between 0.31
and 0.42). Moreover, the parameters � and � of the autoregressive and mobile average processes,
respectively, are all signi�cant. On evaluating the short-memory process, it can be observed that
the parameter bd is highly anti-persistent. On the other hand, the coe¢ cient of the autoregressive
component increases to a signi�cant value very close to one in the �ve countries. The parameter of
the moving-averages component is very small for the �ve countries and is insigni�cant for Chile and
Mexico. Therefore, on evaluating the long-memory component in series that already include level
shifts (short-memory process), it can be seen that the series no longer displays this characteristic
and is anti-persistent or short-memory.

3.4 E¤ect of Level Shifts in GARCH, FIGARCH and CGARCH Models

In this section we estimate and evaluate the GARCH, FIGARCH and CGARCH models in the
level shifts scenario. These models were applied to the volatility without introducing level shifts,
and to the volatility once the level shifts were introduced in the form of the component � t. The

15For the basic RLS model the di¤erence between the volatility and the level shifts component obtained using the
Bai and Perron method (1998, 2003) can be used. The results are essentially unvariable. See Ojeda and Rodríguez
(2014) and Rodríguez and Tramontana (2014).
16 In the Figure, the di¤erent lines are superimposed given the extreme similarity between them.
17Given the afore-mentioned similarity, in this and the upcoming cases we opt to use the level shift component

from the RLS model with mean reversion.
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GARCH (1; 1) model was modeled as follows:

ert = �t�t; (5)

�2t = �+ �rer2t�1 + ���2t�1;
where �t is i:i:d: t-Student with mean 0 and variance 1. Based on the study of Baillie et al. (1996),
we will now write this model in the form of an ARMA(m,p) in ert: �(L)ert = �+ [1���(L)]�t; with
m � maxfp; qg, �(L) = [1 � �(L) � �(L)] and �t � ert � �2t : From this equation the FIGARCH
(p,d,q) model can be de�ned by

�(L)(1� L)dert = �+ [1� �2(L)]�t; (6)

where the parameter d represents the velocity of the decay in the autocorrelations and is included
in the interval ]0; 1[.

The CGARCH model is speci�ed as follows:

ert = �t�t; (7)

(�2t � nt) = �r(er2t�1 � nt�1) + ��(�2t�1 � nt�1);
nt = �+ �(nt�1 � �) + '(er2t�1 � �2t�1);

where the important coe¢ cients are �r and �� for the GARCH model, d for the FIGARCH, and
� for the CGARCH. The parameter � is a constant to which nt converges, which represents the
variable and long term component of the volatility. Therefore, the second equation of (7) represents
the transitory component of the volatility that tends toward zero, and the third part represents the
permanent component. The parameter � measures the persistence of the shocks in the permanent
component of the equation (7), while this persistence is measured by (�r+��) in the equation (5).

On the other hand, a CGARCH model is estimated but by incorporating the level shifts as
follows 18:

ert = �t�t; (8)

(�2t � nt) = �r(er2t�1 � nt�1) + ��(�2t�1 � nt�1);
nt = �+ �(nt�1 � �) + '(er2t�1 � �2t�1) + b� t
i:

As can be seen in the results presented in Table 7, the estimated parameters when the level
shifts are not included clearly re�ect a long-memory component and the existence of GARCH e¤ects
for the �ve countries. However, when the level shifts are included in the modeling, the results are
completely reverted. In the case of the GARCH estimations, it is observed that the variance of the
�ve countries is highly persistent as �r+�� is close to the unit. In e¤ect, the half-life implied by the
estimates is 86, 77, 27, 99 and 43 days for Argentina, Brazil, Chile, Mexico, and Peru, respectively.
However, when level shifts are included the e¤ects are not persistent.

In the case of the estimations of the FIGARCH models, though the sum �r + �� is of limited
relevance or implies limited persistence, this characteristic is assumed by the estimate of the frac-
tional parameter d. The estimates of this parameter are around 0.5, that is, they do not only imply
18The system (8), unlike the studies by Ojeda and Rodríguez (2014 and Rodríguez and Tramontana (2014), is no

longer estimated with the dummies corresponding to the regimes that produce the level shifts, but that only the
smoothed component b� t is used. The coe¢ cients 
i are estimated along with the other parameters of the CGARCH
and re�ect the magnitude of the level shifts.
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long memory but are on the edge of stationarity/non-stationarity. The value of this parameter is
substantially less or insigni�cant when the level-shift component is included.

In the case of the CGARCH model estimation, the values of the parameter � are very close to
the unit in all the cases analyzed. In these conditions, the half-life of this parameter implies an e¤ect
that lasts around 86, 77, 40, 231 and 173 days for each of the �ve countries analyzed. Observing
these estimates, it can be a¢ rmed that the markets of Mexico and Peru display the greatest impact
to shocks. However, once the level shift component is introduced, the parameter � decreases. The
most signi�cant reduction is seen in the series of Peru, which moves from a coe¢ cient � of 0.996 to
0.673, implying that the lags that in�uence the current volatility go from 173 days to just 2 days.
The second change in importance is noted in the series of Mexico, where the parameter � goes from
0.997 to 0.823, implying that the mean life of past shocks goes from 230 days to just 3 days. In the
other countries, the impact is between 40 and 82 days, and 1 and 6 days when the level shifts are
included in the modeling.

4 Forecasting

The construction of the prediction of volatility in time t+h is determined on the basis of the study
undertaken by Varneskov and Perron (2014): byt+� jt = yt +HF � [P2

i=1

P2
j=1 Pr(st+1 = j) Pr(st =

ijYt)Xij
tjt], where Et(yt+� ) = byt+� jt is the prediction of the volatility for t + h, conditioned for the

information up to time t: The matrices F and H are determined as in Section 2. The prediction
horizons are � = 1; 5; 10; 20; 50 and 100.

To measure e¤ectiveness in the prediction we use the criteria of the mean squared forecast error
(MSFE), proposed by Hansen and Lunde (2006), which is presented as: MSFE�;i = 1

Tout

PTout
t=1 (�

2
t;��

yt+�;ijt)
2, where Tout is the number of predictions, �2t;� =

P�
s=1 yt+s, and yt+�;ijt =

P�
s=1 byt+�;ijt,

with i being the models to be compared. The evaluations are undertaken based on the 10% of
the Model Con�dence Set (MCS) proposed by Hansen et al. (2011). This model allows not just
one model to be selected because if the data is not su¢ ciently informative, several models may be
inside the con�dence set.

The predictions have been calculated from the �rst day of trading in 2006 in the �ve countries,
which ensures that the sample with which the predictions are compared contains periods of high
volatility, such as those caused by the crises of 2007-2008 and 2011. Moreover, for the models with
varying probability and the modi�ed (varying probability with mean reversion) only the threshold
of 1% (� = 1%) is used.

Di¤erent measures of volatility are used to evaluate the performance of the random level shift
models. The �rst is that which is used throughout this paper; that is, the logarithm of absolute
value of the returns. The predictions are devised through the equation for byt+� jt. As in the
studies of Ojeda Cunya and Rodríguez (2014) and Rodríguez and Tramontana Tocto (2014), for
this speci�cation of volatility comparisons are made with the four models employed here using
ARFIMA (0,d,0) and ARFIMA (1,d,1).

The second measure of volatility used is squared returns. In this case we increase the number
of rival models to include GARCH and FIGARCH. Given that the variable used here up to this
point is yt = ln(jrtj+0:001), we need to make some transformations to obtain the squared returns.
The complete details are included in Lu and Perron (2010).

The results set out in Table 8 correspond to the logarithm of the absolute value of the returns
as a measure of volatility. It can be seen that for Argentina, the RLS with mean reversion pertains
to the MCS by just 10%. This result is consistent with the sampling in Tables 3, 4 and 5, since
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for Argentina, the parameter 
2 is not signi�cant at any threshold and the parameter 
1 is only
signi�cant to 10% under the threshold of 1%, due to which the most robust model will be RLS
with mean reversion.

For the other four countries the results are more varied, given that there is no model that prevails
in all horizons. For Brazil, the best model in the three �rst horizons is the basic RLS, while in
the following three the best model is the modi�ed RLS. Nonetheless, for the horizons � = 5; 10; 20,
the RLS with mean reversion is also included among the models belonging to the MCS. For Chile,
the results are even more diverse, as there is no single model that clearly prevails. What can be
ascertained in this case is that the RLS model with mean reversion pertains to the MCS for four of
the six horizons analyzed. In the predictions for Mexico the winning model is the RLS with mean
reversion and for Peru the best models are the basic RLS, RLS with mean reversion, and modi�ed
RLS.

Despite the di¤erent results given, the winning models for all countries are the RLS, and it is
thus possible to a¢ rm that the models with random level shifts produce better predictions than
the classic long-memory models such as the ARFIMA.

The results for the volatility represented as the squared returns are set out in Table 9. For
Argentina, unlike Table 8, the RLS model with mean reversion is no better than the other models
for any prediction horizon; however, this model and the others in the random level shift group
pertain to 10% of MCS in most horizons. On the other hand, for Brazil, the RLS models with
mean reversion and the modi�ed are better for almost all horizons, except when the prediction
is calculated 100 periods ahead, but it still pertains to 10% of the MCS. For the other countries
analyzed the same applies; that is, though the RLS models are not the best predictors in all horizons,
in most cases they pertain to 10% of MCS, so they can be said to compete with the traditional
models for estimating and predicting volatility such as GARCH and FIGARCH.

5 Conclusions

Typically, the volatility of �nancial series displays long-term dependency or long memory. This
property is represented in the domain of time by the behavior of its sample ACF that exhibits
values that are signi�cantly di¤erent from zero up to a large number of lags, indicating hyperbolic
decay. However, new literature has stressed that the presence of long memory could be caused
by the presence of infrequent or random level shifts. In this vein, Lu and Perron (2010) and Li
and Perron (2013) use the RLS model to model the volatility of stock market and exchange rate
returns, respectively. In this model there is a short memory component and a random level shift
component. The estimations show that once these level shifts are taken into account, no evidence
of long memory is found. Recently, Xu and Perron (2014) extended the RLS model to include
probabilities of time-varying level shifts and a mean reversion mechanism in the volatility.

Empirical studies applied to �nancial series in Latin America are scanty. The RLS model was
recently applied by Ojeda Cunya and Rodríguez (2014) to explain stock market and exchange rate
volatility in Peru, and by Rodríguez and Tramontana Tocto (2014) to analyze the behavior of stock
market volatilities in a sample of Latin American countries. In this study we follow Xu and Perron
(2014), who extend the RLS model applied to the volatility of exchange rate returns in Argentina,
Brazil, Chile, Mexico, and Peru by factoring in the two above-mentioned extensions. Four RLS
models are estimated: basic RLS, RLS with varying probabilities, RLS with mean reversion, and
a combined RLS model with mean reversion and varying probability. The results show that the
parameters estimated are highly signi�cant, especially that of mean reversion. Moreover, an analysis
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of ARFIMA and GARCH in the presence of level shifts is conducted, which shows that once these
changes are included in the modeling, the long-memory characteristics and GARCH disappear. Our
prediction analysis con�rms that the RLS models are more precise than the other classic models,
which include long memory.
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Table 1. Summary Descriptive Statistics of Returns and Volatility Series

Media SD Maximum Minimum Skewness Kurtosis Sample

Returns

Argentina 0.002 0.032 0.330 -0.757 -0.862 62.476 6142

Brazil 0.002 0.028 0.345 -0.395 -0.039 30.609 5303

Chile 0.001 0.012 0.118 -0.077 0.182 8.696 6096

Mexico 0.001 0.016 0.122 -0.143 -0.019 9.595 4839

Peru 0.001 0.017 0.143 -0.132 0.519 11.094 5831

Volatility

Argentina -4.397 1.060 -0.277 -6.908 -0.235 2.808 6142

Brazil -4.383 0.975 -0.927 -6.908 -0.259 2.827 5303

Chile -4.993 0.845 -2.128 -6.908 -0.151 2.538 6096

Mexico -4.797 0.895 -1.937 -6.908 -0.161 2.604 4839

Peru -4.858 0.951 -1.931 -6.907 -0.027 2.622 5831
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Table 2. Estimates of the Basic RLS Model

�� � �e �

Argentina 0.679a 0.008c 0.937a

(SD:1.060) (0.189) (0.004) (0.009)

Brazil 0.425a 0.010c 0.881a

(SD:0.975) (0.118) (0.006) (0.009)

Chile 0.612a 0.008c 0.778a 0.080a

(SD:0.845) (0.150) (0.004) (0.007) (0.014)

Mexico 0.520a 0.006c 0.830a 0.025c

(SD:0.895) (0.157) (0.004) (0.009) (0.015)

Peru 0.875a 0.0045a 0.842a 0.115a

(SD:0.9511) (0.128) (0.0016) (0.008) (0.015)

Standard errors are reported in parentheses. Estimates with a;b;c are signi�cant at the 1%, 5%,10% level,
respectively.
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Table 3. Estimates of the RLS Model with Time Varying Probabilities (Threshold �%)

Threshold (�%) �� p �e � 
1 
2

Argentina

5% 0.609a -2.661a 0.938a 1.190a 3.451

(0.124) (0.505) (0.009) (0.373) (11.269)

2.5% 0.568a -2.408a 0.937a -0.576b 21.266

(0.140) (0.441) (0.009) (0.247) (119.356)

1% 0.604a -2.432a 0.937a 1.368c 4.301

(0.123) (0.379) (0.009) (0.744) (12.790)

Brazil

5% 0.336a -2.584a 0.881a -0.814c 51.645

0.089 0.666 (0.009) (0.460) (619.496)

2.5% 0.318c -2.421b 0.881a 2.753 0.210a

(0.184) (1.034) (0.009) (4.490) (0.075)

1% 0.357a -2.394a 0.882a 5.271 0.472a

(0.075) (0.487) (0.009) (44.173) (0.118)

Chile

5% 0.239b -1.859a 0.777a 0.078a 1.727 0.864a

(0.097) (0.714) (0.008) (0.014) (1.134) (0.317)

2.5% 0.426b -2.230a 0.778a 0.079a 1.155 0.633

(0.217) (0.715) (0.008) (0.015) (1.138) (1.755)

1% 0.362b -2.094a 0.777a 0.079a 2.070 1.046

(0.157) (0.704) (0.008) (0.014) (2.424) (1.484)
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Table 3 (continued)

Threshold (�%) �� p �e � 
1 
2

Mexico

5% 0.153b -1.899b 0.830a 0.026c 3.104 1.269a

(0.062) (0.800) (0.009) (0.015) (10.918) (0.367)

2.5% 0.202a -2.099a 0.830a 0.026c 5.526 0.424c

(0.039) (0.538) (0.009) (0.015) (38.846) (0.256)

1% 0.245a -2.107a 0.830a 0.027c 5.252 0.428a

(0.063) (0.549) (0.009) (0.015) (16.108) (0.058)

Peru

5% 0.790a -2.690a 0.839a 0.111a 1.160a 0.516a

(0.075) (0.075) (0.008) (0.015) (0.375) (0.176)

2.5% 0.835a -2.679a 0.841a 0.115a 1.143a 0.318c

(0.141) (0.403) (0.008) (0.015) (0.437) (0.183)

1% 0.833a -2.607a 0.840a 0.113a 1.164 0.157a

(0.172) (0.436) (0.009) (0.016) (0.900) (0.031)

Standard errors are reported in parentheses. Estimates with a;b;c are signi�cant at the 1%, 5% or 10% level,
respectively.
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Table 4. Estimates of the RLS Model with Mean Reversion

�� p �e � �

Argentina 0.215a 0.036b 0.935a -0.164a

(0.063) (0.018) (0.009) (0.008)

Brazil 0.375b 0.010 0.880a -0.185a

(0.177) (0.008) (0.009) (0.017)

Chile 0.079a 0.486a 0.771a 0.043b -0.039a

(0.008) (0.012) (0.008) (0.017) (0.000)

Mexico 0.102c 0.049 0.826a -0.147a

(0.057) (0.030) (0.009) (0.009)

Peru 0.105 0.031b 0.833a 0.084a -0.332a

(0.109) (0.015) (0.009) (0.019) (0.024)

Standard errors are reported in parentheses. Estimates with a;b;c are signi�cant at the 1%, 5% or 10% level,
respectively.
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Table 5. Estimates of the Modi�ed RLS Model (Threshold at 1%)

�� p �e � 
1 
2 �

Argentina 0.231a -1.924a 0.934a 0.304b 5.252 -0.208a

(0.086) (0.727) (0.009) (0.122) (63.078) (0.025)

Brazil 0.353a -2.379a 0.882a 6.008 1.991c -0.012a

(0.080) (0.521) (0.009) (22.749) (1.10) (0.000)

Chile 0.080a -0.064a 0.771a 0.043b 0.014a 0.061a -0.040a

(0.008) (0.004) (0.008) (0.017) (0.000) (0.004) (0.000)

Mexico 0.110b -1.596b 0.826a 0.559a 0.162a -0.129a

(0.048) (0.719) (0.009) (0.167) (0.008) (0.011)

Peru 0.119 -1.816a 0.832a 0.081a -2.205 0.219c -0.319a

(0.109) (0.479) (0.009) (0.020) (11.441) (0.126) (0.029)

Standard errors are reported in parentheses. Estimates with a;b;c are signi�cant at the 1%, 5% or 10% level,
respectively.
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Table 6. Estimated Parameters of ARFIMA(0; d; 0) and ARFIMA(1; d; 1) models

d AR MA d AR MA d AR MA

Argentina Brazil Chile

Volatility 0.178 0.155 0.181

(0.000) (0.000) (0.000)

0.429 0.252 -0.620 0.409 0.174 -0.579 0.340 0.356 -0.565

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ct -0.068 -0.069 -0.046

(0.000) (0.000) (0.000)

-0.864 0.911 -0.112 -0.919 0.943 -0.115 -0.902 0.896 -0.021

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.495)

Mexico Peru

Volatility 0.152 0.221

(0.000) (0.000)

0.412 0.338 -0.682 0.336 0.210 -0.384

(0.000) (0.000) (0.000) (0.000) (0.018) (0.000)

ct -0.053 0.016

(0.000) (0.173)

-0.997 0.944 0.014 -0.775 0.866 -0.070

(0.000) (0.000) (0.647) (0.000) (0.000) (0.020)

p-values are reported in parentheses.
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Table 7. Estimated Parameters of GARCH; FIGARCH and CGARCH models

�r �� � ' d

Argentina

GARCH 0.114 0.878

(0.000) (0.000)

FIGARCH 0.115 0.519 0.521

(0.098) (0.000) (0.000)

CGARCH (volatility) -0.017 -0.487 0.992 0.117

(0.340) (0.496) (0.000) (0.000)

CGARCH (short memory process) -1.182 2.064 0.890 1.274

(0.821) (0.694) (0.000) (0.807)

Brazil

GARCH 0.095 0.896

(0.000) (0.000)

FIGARCH 0.085 0.591 0.582

(0.037) (0.000) (0.000)

CGARCH (volatility) -0.026 -0.179 0.991 0.100

(0.143) (0.781) (0.000) (0.000)

CGARCH (short memory process) -2.312 3.091 0.790 2.363

(0.949) (0.931) (0.000) (0.947)

Chile

GARCH 0.169 0.806

(0.000) (0.000)

FIGARCH 0.339 0.599 0.528

(0.000) (0.000) (0.000)

CGARCH (volatility) 0.138 0.360 0.983 0.120

(0.000) (0.001) (0.000) (0.000)

CGARCH (short memory process) -0.424 0.908 0.535 0.595

(0.817) (0.660) (0.000) (0.746)
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Table 7 (continued)

�r �� � ' d

Mexico

GARCH 0.084 0.909

(0.000) (0.000)

FIGARCH 0.239 0.629 0.501

(0.000) (0.000) (0.000)

CGARCH (volatility) 0.064 0.891 0.997 0.034

(0.000) (0.000) (0.000) (0.002)

CGARCH (short memory process) -0.932 1.740 0.823 0.992

(0.830) (0.692) (0.000) (0.819)

Peru

GARCH 0.255 0.729

(0.000) (0.000)

FIGARCH -0.029 0.123 0.484

(0.882) (0.573) (0.000)

CGARCH (volatility) 0.232 0.583 0.996 0.104

(0.000) (0.000) (0.000) (0.000)

CGARCH (short memory process) -0.020 0.027 0.673 0.287

(0.116) (0.947) (0.000) (0.000)

p-values are reported in parentheses.
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Table 8. Forecast Evaluations [byt+� jt = Et ln(jrt+� j+ 0:001)]
� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Argentina

Basic RLS 0.753 4.728 12.475 37.205 209.381 860.698

(0.038) (0.019) (0.004) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.758 4.739 12.456 36.995 208.492 861.245

(0.002) (0.019) (0.004) (0.009) (0.000) (0.000)

Mean Reversion RLS 0.750 4.668 12.204 35.878 198.130 804.210

(1.000a;b) (1.000a;b) (1.000a;b) (1.000a;b) (1.000a;b) (1.000a;b)

Modi�ed RLS 0.752 4.710 12.394 36.976 207.835 846.003

(0.038) (0.019) (0.004) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.991 8.634 26.376 86.607 455.305 1630.945

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.942 7.403 21.462 67.010 332.064 1139.459

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Brazil

Basic RLS 0.691 3.915 10.044 31.052 175.247 773.826

(1.000a;b) (1.000a;b) (1.000a;b) (0.298b) (0.000) (0.000)

Threshold 1% RLS 0.702 3.967 10.122 30.964 170.932 740.975

(0.000) (0.003) (0.178b) (0.298b) (0.002) (0.072)

Mean Reversion RLS 0.694 3.931 10.082 31.075 173.849 765.744

(0.001) (0.190b) (0.336b) (0.298b) (0.000) (0.000)

Modi�ed RLS 0.702 3.960 10.813 30.901 170.627 740.144

(0.000) (0.007) (0.000) (1.000a;b) (1.000a;b) (1.000a;b)

ARFIMA(0,d,0) 0.925 8.368 26.763 92.738 498.011 1792.570

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.879 7.215 22.140 74.181 383.240 1341.148

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 8 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Chile

Basic RLS 0.452 4.077 11.906 40.709 260.675 1002.936

(1.000a;b) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.452 4.078 11.907 40.709 260.569 1002.177

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean Reversion RLS 0.470 3.868 10.993 36.616 230.168 901.681

(0.000) (0.218b) (0.339b) (1.000a;b) (1.000a;b) (0.000)

Modi�ed RLS 0.490 3.853 10.952 36.768 235.372 940.135

(0.00) (1.000a;b) (1.000a;b) (0.276b) (0.018) (0.000)

ARFIMA(0,d,0) 0.707 6.273 18.482 58.157 263.983 751.092

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.703 6.183 18.120 56.704 255.185 719.778

(0.000) (0.000) (0.000) (0.000) (0.018) (1.000a;b)

Mexico

Basic RLS 0.570 4.073 11.897 40.191 231.507 886.526

(1.000a;b) (0.000) (0.000) (0.000) (0.000) (0.052)

Threshold 1% RLS 0.593 4.368 12.831 42.601 232.507 850.812

(0.000) (0.000) (0.000) (0.000) (0.000) (1.000a;b)

Mean Reversion RLS 0.602 3.653 10.301 35.287 220.786 928.209

(0.000) (1.000a;b) (1.000a;b) (1.000a;b) (0.217b) (0.002)

Modi�ed RLS 0.620 3.843 10.884 36.605 217.713 869.037

(0.000) (0.000) (0.000) (0.001) (1.000a;b) (0.263b)

ARFIMA(0,d,0) 0.788 7.066 22.669 77.332 392.473 1312.289

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.785 6.992 22.359 75.996 383.109 1272.077

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 8 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Peru

Basic RLS 0.509 5.510 16.675 54.607 308.784 1148.305

(0.162b) (0.000) (0.000) (0.003) (1.000a;b) (1.000a;b)

Threshold 1% RLS 0.505 5.454 16.511 54.525 320.168 1219.345

(0.451b) (0.001) (0.000) (0.000) (0.003) (0.000)

Mean Reversion RLS 0.504 5.247 15.997 53.400 322.688 1247.681

(1.000a;b) (1.000a) (0.885b) (0.091) (0.003) (0.000)

Modi�ed RLS 0.509 5.285 15.983 52.805 320.776 1248.114

(0.033) (0.147b) (1.000a;b) (1.000a;b) (0.003) (0.000)

ARFIMA(0,d,0) 0.921 9.602 30.121 97.585 464.321 1511.350

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.932 9.877 31.224 102.056 493.114 1630.218

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modi�ed RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 9. Forecast Evaluations [byt+� jt = Etr2t+� ]
� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Argentina

Basic RLS 0.088 0.805 2.958 12.467 88.252 329.053

(0.266b) (0.136b) (0.128b) (0.015) (0.206b) (0.001)

Threshold 1% RLS 0.088 0.840 3.222 13.480 91.914 337.661

(0.266b) (0.119b) (0.080) (0.003) (0.160b) (0.000)

Mean Reversion RLS 0.088 0.813 3.082 13.673 95.404 346.340

(0.266b) (0.136b) (0.128b) (0.005) (0.109b) (0.000)

Modi�ed RLS 0.088 0.825 3.137 13.855 95.825 345.895

(0.266b) (0.136b) (0.115b) (0.004) (0.109b) (0.000)

ARFIMA(0,d,0) 0.180 2.999 11.246 42.323 247.464 932.942

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.177 2.925 10.951 41.153 240.295 905.302

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

GARCH 0.084 0.708 2.649 10.564 94.209 647.874

(1.000a;b) (1.000a;b) (1.000a;b) (1.000a;b) (0.109b) (0.000)

FIGARCH 0.115 1.865 5.683 16.862 77.875 247.954

(0.001) (0.000) (0.000) (0.000) (1.000a;b) (1.000a;b)
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Table 9 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Brazil

Basic RLS 0.079 0.430 1.273 6.361 64.224 271.831

(0.515b) (0.446b) (0.598b) (0.248b) (0.201b) (0.117b)

Threshold 1% RLS 0.082 0.398 1.217 8.172 81.658 317.873

(0.298b) (0.446b) (0.598b) (0.001) (0.000) (0.002)

Mean Reversion RLS 0.079 0.426 1.248 6.294 63.855 270.734

(1.000a;b) (0.446b) (0.598b) (1.000a;b) (1.000a;b) (0.120b)

Modi�ed RLS 0.082 0.395 1.205 8.124 81.385 317.332

(0.298b) (1.000a;b) (1.000a;b) (0.001) (0.001) (0.005)

ARFIMA(0,d,0) 0.139 9.602 7.012 26.442 146.844 510.622

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.125 9.877 4.153 15.019 76.163 233.284

(0.000) (0.000) (0.000) (0.000) (0.150b) (1.000a;b)

GARCH 0.083 0.526 1.936 9.829 75.456 311.991

(0.114b) (0.231b) (0.019) (0.000) (0.084) (0.003)

FIGARCH 0.151 2.310 6.544 20.061 95.785 300.663

(0.000) (0.000) (0.000) (0.000) (0.000) (0.005)
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Table 9 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Chile

Basic RLS 0.018 0.135 0.405 1.321 6.266 16.692

(0.021) (0.010) (0.007) (0.540b) (1.000a;b) (0.049)

Threshold 1% RLS 0.019 0.149 0.476 1.535 6.818 18.059

(0.020) (0.006) (0.004) (0.001) (0.000) (0.000)

Mean Reversion RLS 0.017 0.113 0.354 1.303 6.776 18.258

(1.000a;b) (1.000a;b) (1.000a;b) (1.000a;b) (0.000) (0.000)

Modi�ed RLS 0.017 0.113 0.355 1.304 6.769 18.238

(0.219b) (0.026) (0.008) (0.540b) (0.012) (0.000)

ARFIMA(0,d,0) 0.021 0.197 0.605 1.792 6.611 15.802

(0.006) (0.000) (0.000) (0.000) (0.201b) (1.000a;b)

ARFIMA(1,d,1) 0.021 0.197 0.605 1.794 6.626 15.874

(0.006) (0.000) (0.000) (0.000) (0.197b) (0.049)

GARCH 0.019 0.150 0.528 1.696 6.840 17.447

(0.219b) (0.000) (0.000) (0.000) (0.000) (0.000)

FIGARCH 0.020 0.266 0.917 2.733 11.387 33.908

(0.020) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 9 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Mexico

Basic RLS 0.026 0.134 0.407 1.853 14.259 52.737

(0.020) (0.000) (0.026) (1.000a;b) (1.000a;b) (0.000)

Threshold 1% RLS 0.025 0.126 0.448 2.562 19.270 62.380

(0.706b) (0.003) (0.000) (0.001) (0.000) (0.000)

Mean Reversion RLS 0.025 0.108 0.332 1.922 17.097 59.465

(0.706b) (0.014) (0.049) (0.531b) (0.000) (0.000)

Modi�ed RLS 0.025 0.106 0.328 1.921 17.170 59.634

(1.000a;b) (1.000a;b) (1.000a;b) (0.531b) (0.000) (0.000)

ARFIMA(0,d,0) 0.033 0.300 0.998 3.566 17.427 50.756

(0.004) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.033 0.303 1.013 3.625 17.796 52.262

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

GARCH 0.027 0.149 0.507 2.421 15.000 45.679

(0.020) (0.000) (0.000) (0.002) (0.276b) (1.000a;b)

FIGARCH 0.044 0.656 2.014 6.434 30.631 97.256

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 9 (continued)

� = 1 � = 5 � = 10 � = 20 � = 50 � = 100

Peru

Basic RLS 0.083 0.957 3.019 11.800 67.769 190.331

(0.688b) (1.000a;b) (1.000a;b) (1.000a;b) (0.014) (0.000)

Threshold 1% RLS 0.079 1.096 3.609 16.118 90.852 237.225

(0.983b) (0.185b) (0.031) (0.012) (0.000) (0.000)

Mean Reversion RLS 0.078 0.993 3.285 14.720 82.740 222.070

(1.000a;b) (0.516b) (0.142b) (0.184b) (0.000) (0.000)

Modi�ed RLS 0.078 1.003 3.370 14.702 81.312 218.141

(0.983b) (0.516b) (0.035) (0.044) (0.004) (0.000)

ARFIMA(0,d,0) 0.105 1.370 4.179 12.864 51.539 128.406

(0.072) (0.005) (0.011) (0.575b) (0.017) (0.000)

ARFIMA(1,d,1) 0.105 1.369 4.176 12.853 51.461 128.065

(0.135b) (0.005) (0.012) (0.608b) (1.000a;b) (1.000a;b)

GARCH 0.078 1.134 3.386 12.256 58.040 165.165

(0.983b) (0.038) (0.039) (0.608b) (0.017) (0.000)

FIGARCH 0.086 1.665 5.900 18.118 78.197 228.297

(0.619b) (0.002) (0.002) (0.001) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modi�ed RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries and have been multiplied by 105; MCS p-values are in parentheses. An (a)

indicates that the model is the best according to the MSFE. A (b) indicates that the model is within the 10% MCS

using all comparisons.
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