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Abstract

This paper presents an empirical study of a stochastic volatility (SV) model for daily stocks returns
data of a set of Latin-American countries (Argentina, Brazil, Chile, Mexico and Peru) for the
sample period 1996:01-2013:12. We estimate SV models incorporating both leverage e¤ects and
skewed heavy-tailed disturbances taking into account the GH Skew Student�s t-distribution using
the Bayesian estimation method proposed by Nakajima and Omori (2012). A model comparison
between the competing SV models with symmetric Student�s t-disturbances is provided using the
log marginal likelihoods and a prior sensitivity analysis is also provided. The results suggest that
there are leverage e¤ects in all returns considered but there is not enough evidence for the case of
Peru. Furthermore, skewed heavy-tailed disturbances are con�rmed only for Argentina, symmetric
heavy-tailed disturbances for Mexico, Brazil and Chile, and symmetric Normal disturbances for
Peru. Furthermore, we �nd that the GH Skew Student�s t-disturbance distribution in the SV
model is successful in describing the distribution of the daily stock return data for Peru, Argentina
and Brazil over the traditional symmetric Student�s t-disturbance distribution.
KeyWords: Stochastic Volatility, Generalized Hyperbolic Skew Student�s t-Distribution, Bayesian
Estimation, Markov Chain Monte Carlo, Stock Returns, Latin American Stock.
JEL Classi�cation: C11, C58.

Resumen

Este trabajo presenta una aplicación empírica de un modelo de volatilidad estocástica (SV) aplicado
a los retornos bursátiles diarios de un grupo de países de América Latina (Argentina, Brasil, Chile,
México y Perú) para el período 1996:01-2013:12. Se estima un modelo SV que incorpora tanto
los efectos de apalancamiento, sesgo en la distribución y colas pesadas usando una distribución
t-Student Generalizada Hiperbólica usando el algoritmo Bayesiano propuesto por Nakajima and
Omori (2012). Los resultados del modelo se comparan con modelos de volatilidad estocástica con
distribución t�Student simétrica mediante el uso del logaritmo de las verosimilitudes marginales.
Asimismo un análisis de sensibilidad a las priors es proporcionado. Los resultados sugieren que hay
efectos de apalancamiento en todos las series de retornos consideradas aunque no hay evidencia
concluyente para el caso de Perú. De otro lado, perturbaciones sesgadas con colas pesadas son
con�rmadas para Argentina, mientras que la existencia de colas pesadas es obtenida para Mexico,
Brasil y Chile y perturbaciones Normales simétricas en el caso del Perú. En general, encontramos
que la distribución GH Skew t-Student es adecuada en la modelación de los retornos diarios de
Perú, Argentina y Brasil en comparación con los modelos tradicionales con distribución simétrica
t-Student.
Palabras Claves: Volatilidad Estocástica, Distribución Hiperbólica Generalizada Sesgada t-
Student, Estimación Bayesiana, Cadenas de Markov de Monte Carlo, Retornos Bursátiles, América
Latina.
Classi�cación JEL: C11, C58.
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1 Introduction

Returns from �nancial market variables such as stock and exchange rate are characterized by
some empirical properties, which are generally exhibited in �nancial time series. There are three
important stylized facts or properties that are found in almost all sets of daily returns: (i) returns
are not normally distributed; instead, the characteristics of the return distributions are excess
of kurtosis (leptokurtic) and some degree of skewness compared with the Normal distribution3;
(ii) there is almost no correlation between returns for di¤erent lags; and (iii) functions of returns
can have substantial autocorrelations. For example, the autocorrelation of both absolute returns
and squared returns are positive for many lags and statistically signi�cant (Taylor, 2005). These
properties are explained in most cases by the presence of time-varying volatility and volatility
clustering over time. See Humala and Rodriguez (2013) for a list of stylized facts concerning
Peruvian stock and Forex markets.

Modelling time-varying volatility has been widely used in the literature on �nancial time series,
as the demand for volatility forecasts has increased as a means of assessing �nancial risk. Two
approaches that have proven useful are the autoregressive conditional heteroskedasticity (ARCH)
family, including the ARCH model developed by Engle (1982), the generalized ARCH (GARCH)
model of Bollerslev (1986), and the stochastic volatility (SV) model, �rst introduced by Taylor
(1982), then Taylor (1986), which was the �rst detailed published exploration of the problem of
volatility modelling in �nance. For extensive reviews, see Bollerslev et al. (1994) and Engle (1995)
for the ARCH family models, and Shephard (2005) for a comprehensive explanation of the SV
models. Both approaches attempt to model and reproduce the principal properties of the asset
returns; however, the di¤erence is that ARCH models explicitly model and specify a process for the
conditional variance of returns given past returns observed, while the SV models involve specifying
a stochastic process for volatility and this is modelled as an unobserved variable.

Departures from Normality have given rise to propositions of other distributions in order to
capture heavy-tailedness of the asset return distribution in the SV class of models. Heavy-tailed

1This paper is drawn from the Thesis of Patricia Lengua Lafosse (2015) at the Master of Statistics Program,
Graduate School, Department of Mathematics, Ponti�cia Universidad Católica del Perú. We thank useful comments
of Fernando Pérez Forero (Central Bank of Peru), Luis Valdiviezo and Oscar Millones (PUCP), participants at the
XXXII Meeting of the Central Bank of Peru (2014), the Spanish Economic Symposium (2014, Palma de Mallorca,
Spain) and Jorge Rojas (PUCP). Any remaining errors are our responsibility.

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Ponti�cia Universidad Católica del
Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail
Address: gabriel.rodriguez@pucp.edu.pe.

3 In most cases, it is negative skewness and it can be viewed as the case where negative returns of a given magnitude
are more likely than positive ones of the same magnitude. Regarding excess of kurtosis, it can be viewed as the case
where extreme values are more likely than would be dictated by a Normal distribution.
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disturbances are often incorporated using distributions such as Student�s t-distribution; see, for
example, Harvey et al. (1994), Liesenfeld and Jung (2000), Chib et al. (2002), Berg et al. (2004),
Jacquier et al. (2004), Omori et al. (2007), Asai (2008), Choy et al. (2008), Nakajima and Omori
(2009), Asai and McAleer (2011), Wang et al. (2011), Nakajima (2012) and Delatola and Gri¢ n
(2013); the Normal Inverse Gaussian distribution (NIG), see Barndor¤-Nielsen (1997) and An-
dersson (2001); the Generalized Error Distribution (GED), see Liesenfeld and Jung (2000); the
Generalized-t distribution (GT), see Wang (2012) and Wang et al. (2013); a class of mixtures of
Normal distributions, see Abanto-Valle et al. (2010), Asai (2009); to allow simultaneous treatment
of skewness and heavy tails in the conditional distribution of returns, Skew-GED distribution,
see Cappuccio et al. (2004), Cappuccio et al. (2006); the Extended Generalized Inverse Gaussian
(EGIG), see Silva et al. (2006); the Skew Student�s t-distribution, see Tsiotas (2012); Abanto-Valle
et al. (2013) and the Generalized Hyperbolic (GH) Skew Student�s t-distribution, see Nakajima
and Omori (2012), Trojan (2013)4.

Another characteristic of the return distribution for �nancial variables is the asymmetric re-
sponse of volatility known as the leverage e¤ect : negative past innovations on asset returns tend to
increase the current volatility. First noted by Black (1976) and studied by Nelson (1991) and Yu
(2005), leverage e¤ect refers to the tendency for changes in asset prices to be negatively correlated
with changes in asset volatility. Leverage e¤ect is an important stylized fact of, especially, stock
return and has prompted consideration of asymmetric extensions of the basic SV model.

Time-varying volatility for �nancial variables of developed economies have been studied ex-
tensively; however, empirical studies of the Latin American stock market returns heretofore are
very scarce. The volatility characteristics of the �nancial markets in Latin America are far from
being thoroughly analyzed despite their growth in recent years5. The main aim of this paper is to
estimate SV models incorporating both leverage e¤ects and skewed heavy-tailed disturbances by
taking into account the GH Skew Student�s t-distribution for the Latin American stock markets
returns and using the Bayesian estimation method proposed by Nakajima and Omori (2012). The
GH skew Student�s t-distribution includes Normal and Student�s t-distributions as special cases.
Therefore, the SV model using the GH Skew Student�s t-distribution (SVSKt model) can take a
�exible form to �t the returns and volatility characteristics because the SVSKt model is able to
model substantially skewed and heavy-tailed data and includes the SV model with Normal dis-
turbances (SV-Normal) and the SV model with symmetric Student�s t-disturbances (SVt). We
apply the SVSKt model to the daily returns of �ve Latin American stock market returns: Peru,
Argentina, Mexico, Chile and Brazil. We also include the S&P500 returns in order to perform some
comparisons.

The GH Skew Student�s t-distribution has been studied by Aas and Ha¤ (2006) and brie�y
mentioned by Prause (1999) and Jones and Faddy (2003). It belongs to the class of GH distri-
butions introduced by Barndor¤-Nielsen (1977) and extensively discussed by Prause (1999). The
GH distribution is a Normal variance-mean mixture and possesses a number of attractive proper-
ties: (i) it is closed under conditioning, marginalization, and a¢ ne transformations; (ii) the GH

4 In fact, the GT-family nests a number of well-known distributions including Normal, Student-t, Laplace and
GED distributions. The class of scale mixtures of Normal distributions used by Abanto-Valle et al. (2010) include
Normal, Student-t, Slash and Variance Gamma distributions. The Weibull and the Generalized Gamma distributions
are particular cases of the EGIG family used by Silva et al. (2006).

5A recent reference for Peruvian Stock and Forex return volatilities is Alanya and Rodríguez (2014) using a
standard stochastic volatility model with Normal disturbances.
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distribution can be both symmetric and skewed, and its tails are generally semiheavy; and (iii)
the GH distribution embraces many special cases including Normal, Hyperbolic, Normal Inverse
Gaussian (NIG), Variance-Gamma, Student-t and skew Student�s t-distributions; see Aas and Ha¤
(2006) and Nakajima and Omori (2012). However, estimation and identi�cation of its parameters
is generally di¢ cult due to the �atness of the likelihood function, and consequently, some parame-
ters are hard to separate, and the likelihood function may have several local maxima; see Prause
(1999), Aas and Ha¤ (2006), and Deschamps (2012). Nevertheless, Aas and Ha¤ (2006) noted
that the GH Skew Student�s t-distribution is analytically tractable and may considerably alleviate
the identi�cation problem mentioned above. Another advantage is that the GH Skew Student�s
t-distribution exhibits unequal thickness in both tails, unlike the other skewed extensions of the
Student-t distribution. This distribution has the property of one tail exhibiting polynomial and
the other exponential behavior, and this o¤ers more �exibility6.

One of the main di¢ culties of the SV framework is the parameter estimation, because no
explicit expression for the likelihood function of the SV model is directly available given that
the variance is an unobserved component. It is possible to compute the likelihood function but
this requires the use of simulation techniques, such as simulated maximum likelihood, method of
simulated moments, or Markov Chain Monte Carlo (MCMC) techniques. For an overview of the
estimation methods of SV models, see Shephard (1996, 2005); Ghysels et al. (1996); Broto and Ruiz
(2004). Simulation techniques require a computational burden since we need to repeat the �ltering
procedure many times in order to evaluate the likelihood function for each set of parameters until it
reaches the maximum (Nakajima, 2012). Computer-intesive methods are thus needed even for the
simplest version of the model7. In addition, Nakajima and Omori (2012) noted that the GH Skew
Student�s t-distribution is di¢ cult to implement in the SV context due to the large numbers of
latent volatility variables. To overcome this di¢ culty, Nakajima and Omori (2012) have proposed
a Bayesian estimation method using the MCMC algorithm for a precise and e¢ cient estimation
of the SV model, including both leverage e¤ects and skewed heavy-tailed disturbances using the
GH Skew Student�s t-distribution. The key point in implementing an e¢ cient MCMC algorithm
in the SVSKt model is to express the GH Skew Student�s t-distribution of the disturbance as a
Normal variance-mean mixture of the Generalized Inverse Gaussian (GIG), speci�cally, the Inverse
Gamma (IG) distribution as a mixing distribution among the class of GIG distributions to nest
and extend various existing SV models.

In this paper, we estimate a SV model incorporating both leverage e¤ects and skewed heavy-
tailed disturbances by taking into account the GH Skew Student�s t-distribution (SVSKt) and using
the Bayesian estimation method proposed by Nakajima and Omori (2012). We apply the SVSKt
model to the daily returns of �ve Latin American stock market returns: IGBVL (Peru), MERVAL
(Argentina), MEXBOL (Mexico), IPSA (Chile) and IBOVESPA (Brazil), and we also analyze the
U.S. S&P500 returns to compare the results. The SVSKt model can be considered a �exible model
to �t the returns and volatility characteristics, because it is able to model substantially skewed and
heavy-tailed data and includes the SV model with Normal disturbances (SV-Normal) and the SV

6Several articles have studied di¤erent skew t-type distributions where distributions have two tails behaving as
polynomials. This fact means that they �t heavy-tailed data well, but they do not handle substantial skewness. By
substantial skewness, Aas and Ha¤ (2006) mean cases with one heavy tail and one nonheavy tail. Their de�nition
relates to the relative fatness of the two tails of the density rather than a threshold for the skewness coe¢ cient.

7Despite the computational costs that these techniques involving, increasing computer power and the further
development of e¢ cient sampling techniques weaken this drawback noticeably.
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model with symmetric Student�s t-disturbances (SVt).
The posterior mean parameter estimates are consistent with the literature that indicates high

persistence of the volatility in stock returns, except for the IGBVL returns. The results also
support the evidence that there are leverage e¤ects in all returns considered, but there is not
enough evidence for the IGBVL. The estimates show that the leverage e¤ect is more notable in
MEXBOL and IBOVESPA, followed by MERVAL and IPSA. Another important result is that the
log-volatility of IGBVL returns have more variability than the other stock returns in Latin America.
Also, the results support the evidence of skewed heavy-tailed disturbances only for the MERVAL,
symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric
Normal disturbances for the IGBVL. The volatility estimates for daily stock returns show a similar
pattern between them for the sample period considered, including similar clustering periods. On
the other hand, the comparison between SVSKt and SVt models show that the former outperforms
the latter for IGBVL, MERVAL and IBOVESPA, while the reverse is true for MEXBOL and IPSA.

The paper is organized as follows. In Section 2, we describe a basic SV Normal model and
introduce the GH Skew Student�s t-distribution in the SV context (SVSKt model). In addition,
we describe the Bayesian estimation method using the MCMC algorithm proposed by Nakajima
and Omori (2012). Section 3 presents empirical results based on �ve Latin American stock market
returns: Peru, Argentina, Mexico, Chile and Brazil, where the SVSKt model is applied to daily
return data using the estimation method proposed by Nakajima and Omori (2012) and the com-
peting SVt models are compared. In order to compare results, the SVSKt is also applied to US
S&P500 daily return data. A prior sensitivity analysis is also provided in this Section. Conclusions
are presented in Section 4. In the Appendix, we present the properties of the GH Skew Student�s
t-distribution and the MCMC sampling procedure in detail, as well as the Multi-move sampler for
the SVSKt model used by Nakajima and Omori (2012).

2 Bayesian Inference for the SV Model with Leverage and Skewed Heavy-Tailed
Disturbances using the GH Skew Student�s t-Distribution

2.1 A Basic SV Model

The SV model assumes that the volatility of stock returns has been generated under a latent
stochastic process. The basic discrete-time SV model with Normal disturbances can be written as

yt = exp(ht=2)�t; t = 1; : : : ; n; (1)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (2)

�t � N(0; 1); (3)

�t � N(0; �2); (4)

where yt is the asset return and ht is the unobserved logarithm of the volatility. The volatility
process is commonly assumed to follow a stationary AR(1) process by imposing that the persistence
parameter satisfy the condition j�j < 1; this implies that the log-volatility process is stationary
and the initial value, h1, is assumed to follow a stationary distribution by setting h0 = � and
�0 � N(0; �2=(1� �2)). Finally, �t and �t are uncorrelated Normal distributed disturbances.

There are characteristics of the return distribution for �nancial variables that the basic SV
model with Normal disturbances does not capture, such as excess of kurtosis and heavy-tailedness,

4



skewness and the leverage e¤ects. The excess of kurtosis and skewness of the asset return distribu-
tion justi�es the introduction of skewed heavy-tailed disturbances such as the GH Skew Student�s
t-distribution. On the side of the leverage e¤ects, the basic SV model does not allow the volatility
to react with positive or negative movements in returns. These leverage e¤ects can be incorporated
into the SV model by assuming that there is some association between the return shocks (�t) and
volatility shocks (�t).

2.2 An SV Model with Leverage and Skewed Heavy-Tailed Disturbances

According to Nakajima and Omori (2012), the SV model with leverage e¤ects can be written as:

yt = exp(ht=2)�t; t = 1; : : : ; n; (5)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (6)� �t�t � � N (0;�) ; with � =
h
1 ��
�� �2

i
: (7)

This model is similar to the previous basic SV model, but now we allow �t and �t to be correlated
disturbances, where the parameter � measures the correlation between them. We have volatility
asymmetry if � 6= 0 and, speci�cally, when � < 0, this indicates a leverage e¤ect: a negative return
today will increase volatility tomorrow, and when � = 0, e¤ects of this type do not occur; see Yu
(2005).

Regarding the SV model incorporating both leverage e¤ects and skewed heavy-tailed distur-
bances using the GH Skew Student�s t-distribution, skewed heavy tails in the return distribution
are incorporated into the SV model by replacing the Normal disturbance �t in (5) with a disturbance
from a GH Skew Student�s t-distribution, denoted by !t. This GH Skew Student�s t-distribution
is a limiting case of the more general class of the GH distribution. Following Prause (1999) and
Aas and Ha¤ (2006), the probability density function of a GH random variable !�t is given by:

fGH(!
�;�; �; �; �!; �) =

(�2 � �2)�=2K��1=2

�
�
q
�2 + (!� � �!)2

�
exp (�(!� � �!))

p
2����1=2��K�

�
�
p
�2 � �2

��q
�2 + (x� �!)2

�1=2�� ; (8)

where Kj is the modi�ed Bessel function of the third kind of order j and the parameters must ful�ll
certain conditions; for more details see Appendix A. The GH distribution may be represented as
a Normal variance-mean mixture with the Generalized Inverse Gaussian (GIG) distribution as a
mixing distribution. This means that the GH variable !�t can be represented as:

!�t = �! + �z
�
t +

p
z�t �t; �t � N(0; 1); z�t � GIG(�; �; 
); (9)

with �t and zt independent and 
 =
p
�2 � �2. The GH Skew Student�s t-distribution is the

special case where � = ��=2(� > 0) and � ! j�j (the latter implies 
 = 0) in equation (8). The
probability density function of a GH Skew Student�s t- random variable !t is given by:
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fGHskewt(!; �; �; �!; �) =

2
1��
2 �� j�j

�+1
2 K �+1

2

�r
�2
�
�2 + (! � �!)2

��
exp (� (! � �!))

�(�2 )
p
�

�q
�2 + (! � �!)2

� �+1
2

; � 6= 0;

(10)
and

fGHskewt(!; �; �; �!) =
�(�+12 )p
���(�2 )

"
1 +

(! � �!)2

�2

#�(�+1)=2
; � = 0: (11)

where �(:) is the Gamma function. The density given in (11) is known as the noncentral Student�s
t-distribution with � degrees of freedom.

As observed in the literature, estimation and identi�cation of the GH distribution parameters
is generally di¢ cult; see Prause (1999), Aas and Ha¤ (2006), and Deschamps (2012). It is an issue
even for a GH Skew Student�s t-distribution with � = ��=2 (� > 0) and 
 = 0; see Nakajima
and Omori (2012). In order to overcome these di¢ culties, Nakajima and Omori (2012) make the
additional assumption that � =

p
�, and show that their proposed parameterization is appropriate

for the SV model with the GH Skew Student�s t-distribution because it allows a parsimonious
representation that is more amenable to estimation and leads to e¢ cient MCMC sampling. This
additional assumption yields z�t = zt � GIG(��=2;

p
�; 0), or, equivalently, IG(�=2; �=2) where IG

denotes the Inverse Gamma distribution. Therefore, the GH Skew Student�s t-disturbance, !t, can
be expressed in the form of the Normal variance-mean mixture as:

!t = �! + �zt +
p
zt�t; �t � N(0; 1); zt � IG(�=2; �=2); (12)

where �! and � are the location and skew parameters, respectively, and the IG distribution is the
mixing distribution among the class of GIG distributions. Nakajima and Omori (2012) argue that
the structure of (12) lends itself well to the construction of a MCMC algorithm in the Bayesian
inference context. To allow E(!t) = 0, it is assumed that �! = ���z, where �z � E(zt) = �=(��2).
The variance of !t is only �nite when � > 4, as opposed to the symmetric Student�s t-distribution
which only requires � > 2. For this reason an additional constraint is imposed, � > 4, in order to
ensure existence of the second moment of !t.

Regarding the tails of theGH Skew Student�s t-distribution, this distribution has the property of
exhibiting unequal thickness in both tails, where one tail has polynomial and the other exponential
behavior. It is the only subclass of the GH family of distributions to have this property. Thus, the
GH Skew Student�s t-distribution has one heavy and one semiheavy tail. This makes it unique for
modeling substantially skewed and heavy-tailed data as found in �nancial markets (Aas and Ha¤,
2006; Trojan, 2013). The tails of the GH Skew Student�s t-distribution are characterized solely by
the parameters � and �, which jointly determine the degree of skewness and heavy tailedness. A
lower value of � (when � �xed) implies a more negative skewness as well as heavier tails. On the
other hand, as � becomes larger (when � �xed) the density becomes less skewed and has lighter
tails. Figure 1 shows densities of the GH Skew Student�s t-distribution using several combinations
of the parameter values of � and �, and demonstrates how both parameters jointly determine the
skewness and the kurtosis of the distribution.
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Taking into account the above issues, the SV model incorporating both leverage e¤ects and
skewed heavy-tailed disturbances by using theGH Skew Student�s t-distribution (the SVSKt model)
can be written as:

yt = exp(ht=2)f�(zt � �z) +
p
zt�tg; t = 1; : : : ; n; (13)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (14)

zt � IG(�=2; �=2); (15)� �t�t � � N (0;�) ; with � =
h
1 ��
�� �2

i
: (16)

The degree of freedom � > 4 is an unknown parameter to be estimated. The SVSKt model includes
the SV model with Normal disturbances (SV-Normal) when � = 0 and zt � 1 for all t and to the
symmetric Student�s t-disturbances (SVt) when � = 0.

2.3 Bayesian Estimation of the SVSKt Model

We use the Bayesian estimation method proposed by Nakajima and Omori (2012) using the MCMC
algorithm for the SVSKt model. In this subsection, we present some preliminary issues regarding
the estimation of the SV models within the Bayesian context and a brief discussion about the steps
of the MCMC algorithm of Nakajima and Omori (2012).

Estimation of SV models consists of two stages: estimation of the model�s set of parameters,
and estimation of the unobserved volatility time series. Techniques based on MCMC algorithms
o¤er a framework both for estimating the parameters of the SV models and for assessing the latent
volatilities. These methods have had a widespread in�uence on the theory and practice of Bayesian
inference that are based on the posterior distributions of parameters given the observed data using
the Bayes�Theorem, where �(� j y) _ f(y j �)�(�) is the the posterior distribution of parameters
conditional on the data y; � is the vector that contains all parameters of the model; f(y j �)
is the likelihood function; and �(�) are the priors, which are beliefs about the distributions of
the parameters. The idea behind the MCMC algorithms is to produce random variables from a
given multivariate density (the posterior density in Bayesian applications) by repeatedly sampling
a Markov chain whose invariant distribution is the target density of interest; see Kim et al. (1998).
There are typically many di¤erent ways of constructing a Markov chain with this property; but a
key point is to isolate those that are simulation-e¢ cient in the context of SV models; therefore the
design of the MCMC algorithm is important for the speed of convergence of the chains.

In the SV context, the likelihood function to be maximized is given by f(y j �) =
Z
f(y j

h; �)f(h j �)dh. Jacquier et al. (1994) argue that the likelihood function has no analytical repre-
sentation and is intractable. This fact precludes the direct analysis of the posterior density �(� j y)
by MCMC methods. This problem can be overcome by focusing instead on the density �(�; h j y);
where h = (h1; : : : ; hn) is the vector of n latent log-volatilities; see Kim et al. (1998). The MCMC
procedures can be developed to sample this density without computation of the likelihood function
f(y j �). These draws can be used to make inferences by appealing to suitable ergodic Theorems
for Markov chains. For example, posterior moments and marginal densities can be estimated by
averaging the relevant functions of interest over the sampled random variables. For instance, the
posterior mean of � is estimated by the sample mean of the simulated � values.
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Several approaches to MCMC algorithms have been suggested for the estimation of the SV model
within the Bayesian context. Jacquier et al. (1994) use a single-move Gibbs sampling within the
Metropolis�Hastings algorithm to sample from the log-volatilities h = (h1; : : : ; hn). This algorithm
consists of generating a sample of one state, ht, at a time given others, hk (k 6= t). Some researchers
have argued that when parameters are correlated, the single-move procedure results in a slower
speed of convergence of the Markov chain. Kim et al. (1998) developed the mixture sampler
that approximates the distribution of log-squared returns by mixture of Normal distributions,
allowing joint drawing on the components of the whole vector of log-volatilities. Another approach,
developed by Shephard and Pitt (1997) and Watanabe and Omori (2004) in the context of state-
space modeling, uses the multi-move sampler for generating the log-volatility in the SV model
by updating several variables at a time. This algorithm can produce e¢ cient samples from the
target conditional posterior distribution by dividing the process of h = (h1; : : : ; hn) into several
blocks and generates a sample of each block given other blocks. Regarding the SV model with
leverage, Omori and Watanabe (2008) developed the associated multi-move sampler and showed
that it produces e¢ cient samples. The mixture sampler and multi-move sampler are more e¢ cient
than the single-move sampler; see Nakajima (2012).

The Bayesian estimation method proposed by Nakajima and Omori (2012) for the SVSKt
model extends the method developed by Omori and Watanabe (2008) for sampling h using the
multi-move sampler. They noted that the key point to implement an e¢ cient MCMC algorithm in
the SVSKt model is to express the GH Skew Student�s t-distribution of the disturbance as a Normal
variance-mean mixture of the GIG, as stated in (12); speci�cally, the IG distribution as a mixing
distribution among the class of GIG distributions. They consider the variable zt, following the
mixing distribution, as a latent variable. The conditional posterior distribution of each parameter
is reduced to a much more tractable form conditional on zt than when the model is considered in
the direct likelihood form of the GH Skew Student�s t-distribution8. This treatment allows samples
to be drawn from the conditional posterior distribution of zt for t = 1; : : : n: Nakajima and Omori
(2012) use the following sampling algorithm for the SVSKt model using the MCMC method. Let
� = (�; �; �; �; �; �), fytgnt=1; fhtgnt=1, fztgnt=1 and �(�), �(#) and �(�) are the prior probability
densities of �, # � (�; �)0 and �, respectively. Random samples are drawn from the posterior
distribution of (�; h; z) given y. The sampling steps are given by: (i) initialize �; h and z; (ii) gen-
erate �j�; �; �; �; �; h; z; y; (iii) generate (�; �)j�; �; �; �; h; z; y; (iv) generate �j�; �; �; �; �; h; z; y;
(v) generate �j�; �; �; �; �; h; z; y; (vi) generate �j�; �; �; �; �; h; z; y; (vii) generate zj�; h; y; (viii)
generate hj�; z; y; (ix) go to 2. The full algorithm describing more details of each sampling step can
be found in Appendix B, and the details of the multi-move sampler are described in the Appendix
C.

3 Empirical Application to Stock Returns Data

3.1 The Data

For Bayesian estimation of the SVSKt model, we consider the daily returns of �ve Latin Amer-
ican stock market returns: IGBVL (Peru), Argentina (MERVAL), Mexico (MEXBOL), Brazil

8Nakajima and Omori (2012) noted that when � = 0, the closed form of the density f(yt j ht), which is marginalized
over zt, is available. However, in the case of � 6= 0, the closed form of the density f(yt j ht; ht+1) is not available.
Therefore, the latent variable zt plays an important role in exploring the posterior distributions using the MCMC
algorithm.
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(IBOVESPA), and Chile (IPSA). The Latin American stock market returns cover the sample pe-
riod from 2/1/1996 to 30/12/2013, except for Peru where the period is from 2/1/2001 to 30/12/2013
due to a change in the methodology of the IGBVL index in November 1998, which could a¤ect the
results. In our application, we also analyze the U.S. S&P500 index from 2/1/1996 to 20/12/2013
to compare the results of literature with Latin American stock market returns. One reason is that
the U.S. stock market could be considered as a good benchmark9.

Daily stock returns are computed as the log di¤erence yt = logPt � logPt�1; where Pt is the
closing stock price of day t. The data was obtained from Bloomberg and the sample size di¤ers
between countries due to holidays and stock market non-trading days. Table 1 shows the number
of observations and some descriptive statistics, and Figure 2 shows the time series plots of the daily
stock returns. Skewness statistics are sometimes used to assess the symmetry of distributions while
kurtosis statistics are often interpreted as a measure of similarity to a Normal distribution. These
statistics are sensitive to extreme observations. The IGBVL and the MERVAL series are negatively
skewed while the MEXBOL, the IBOVESPA and the IPSA series of returns are positively skewed.
However, the skewness of the MEXBOL is very close to zero. The IGBVL index is the most
negatively skewed with �0:528 and the IBOVESPA index is the most positively skewed with 0:299.
As regards the kurtosis, all the daily returns of Latin American returns considered have positive
kurtosis and IBOVESPA has the highest value 13:143. All �ve sets of returns of Latin American
returns are leptokurtic, since all the estimates of kurtosis in Table 1 exceed 3, which is the kurtosis
value for Normal distribution. In the case of the S&P500 daily returns, this index also has negative
skewness and positive kurtosis. The summary statistics show that daily stock returns of the �ve
countries appear to be distributed with fat-tails for the distribution of the empirical returns data
and negative skewness for IGBVL and MERVAL. It is clear that the returns-generating process is
not even approximately Gaussian.

3.2 Parameter Estimates

For parameter estimates of the SVSKt model, we use the same prior distributions as Nakajima and
Omori (2012). The following prior distributions are assumed and commonly used in the literature;
see for example, Kim et al. (1998), Meyer and Yu (2000), Yu (2005), Omori et al. (2007), Nakajima
and Omori (2009), Nakajima (2012), Trojan (2013):

1. Let � = 2���1 and we specify a Beta(�; �) prior distribution for �� with � = 20 and � = 1:5
which implies that the prior mean and prior standard deviation of � are (0:8605; 0:1074): Our
prior on � has the support on the interval (�1; 1) and mirrors a belief in moderate volatility
persistence with mean 0:86:

2. We assume a conjugate Inverse-Gamma prior for �2; that is, �2 � IG(�; �) with shape
parameter � = 2:5 and scale parameter � = 0:025, which implies that the prior mean and
prior standard deviation of �2 are (0:0167; 0:0236):

3. We employ a Normal prior distribution for �, that is, � � N(�10; 1)10 and a U(�1; 1) prior
distribution for �:

9Although we deal with volatility of stock returns, it is important to mention that the periods considered in the
estimates for all countries are periods of stable in�ation. We do not consider periods of high in�ation as comparisons
between di¤erent indices would be inadequate.
10Kim et al. (1998) and Meyer and Yu (2000) employ a slightly informative prior for � : � � N(0; 10).
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4. We specify a standard Normal prior distribution for �; that is, � � N(0; 1) and aGamma(�; �)
prior distribution for � with shape parameter � = 16 and rate parameter � = 0:8. We
assume an additional constraint � > 4 in the prior distribution of � to ensure existence
of the second moment of !t, that is, E(!2t ) < 1: Thus, the prior distribution of � is
� � Gamma(16; 0:8)1(� > 4) which implies that the prior mean and prior standard deviation
of � are (20; 5) and where 1(:) is the indicator function.

The MCMC simulation is conducted with 20000 samples after discarding the initial 5 000
samples as a burn-in period for MERVAL, MEXBOL, IBOVESPA, IPSA and S&P500 and 9000
samples as a burn-in period for IGBVL, so that the e¤ect of initial values on the posterior inference
is minimized. Using the 20000 samples for each of the parameters, the posterior means, the standard
deviations, the 95% intervals, and the ine¢ ciency factor are obtained. The posterior means are
computed by averaging the simulated samples. The 95% intervals are calculated using the 2.5th and
97.5th percentiles of the simulated samples. The MCMC sampler is initialized by setting � = 0:97;
� = 0:2; � = �0:3; � = �10; � = �0:3 and � = 15 for MERVAL, MEXBOL, IBOVESPA, IPSA
and S&P500 and � = 0:85; � = 0:8; � = �0:05; � = �9; � = �0:015 and � = 30 for IGBVL.

We compute the ine¢ ciency factor to check the e¢ ciency of the MCMC algorithm. The ine¢ -
ciency factor is de�ned by 1+2�1s=1�s; where �s is the sample autocorrelation at lag s. It measures
how well the MCMC chain mixes; see Chib (2001), and Nakajima and Omori (2009, 2012). It is
also the estimated ratio of the numerical variance of the posterior sample mean to the variance of
the hypothetical sample mean from uncorrelated draws. The ine¢ ciency factor serves to quantify
the relative e¢ ciency from correlated versus independent samples. When the ine¢ ciency factor
is equal to m, we need to draw MCMC samples m times as many as uncorrelated samples. We
compute the ine¢ ciency factor using a Parzen window with bandwidth bw = 1000.

Figures 3-8 show the MCMC estimation results of the SVSKt model for the IGBVL, MERVAL,
MEXBOL, IBOVESPA, IPSA and S&P500 returns, respectively. Regarding the Latin American
stock returns, the sample paths appear to be stable and the proposed estimation scheme works
well for MERVAL, MEXBOL, IBOVESPA and IPSA. In these cases, the autocorrelation over the
iterations is decaying and there is convergence of the Markov chains of the parameters. As regards
the IGBVL, we obtain poor mixing (or slow convergence) of the Markov chain for some parameters
(�; � and �) and estimation results show high autocorrelation through iterations of �; � and � with
a slow decay. With respect to S&P500, we obtain similar results to Nakajima and Omori (2012).

Table 2 shows the estimation results of the posterior estimates: the posterior means, the stan-
dard deviation, the 95% credible intervals, and the ine¢ ciency factors for the stock daily returns
data. The posterior means of �, which measures persistence of the log-volatility, are close to one
(in the range of 0:953 to 0:971) for MERVAL, MEXBOL, IBOVESPA and IPSA. The IBOVESPA
and MEXBOL are more persistent, followed by IPSA and MERVAL. In fact, for the two former
volatilities, the half-lives of the shocks have a duration of 23.6 and 21.5 days, respectively. In
the cases of the IPSA and MERVAl, the durations are 19.6 and 14.6 days, respectively. For the
S&P 500 the half-life duration of a shock is around 23 days, which is very close to the results of
IBOVESPA and MERVOL. On the opposite side, the IGBVL daily returns data has a posterior
mean of � = 0:861, which indicates a low persistence in comparison to the volatility of the other re-
turns above-mentioned. In this case, the half-life duration of a shock is only 4.7 days, which is very
low. These results are interesting because they contrast with the result of Alanya and Rodriguez
(2014), where the half-life shock is 15.8 days using a SV model with Normal disturbances.
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The posterior means of �, which measure the correlations between �t and �t, are estimated to be
negative for all returns considered. When � values are negative, it implies that there are leverage
e¤ects. The MEXBOL and the IBOVESPA have the highest negative posterior mean estimates
of � (�0:394 and �0:346, respectively), which implies that the leverage e¤ect is more notable for
these returns. Also, the 95% credible intervals are negative, implying that the posterior probability
that � is negative is greater than 0:95, and the negativity of � is credible. The same applies with
MERVAL and IPSA (posterior mean estimates for � are �0:2977 and �0:2970; respectively) where
the 95% credible intervals are negative, but this is a smaller leverage e¤ect than the previous
returns. In the case of the IGBVL, the posterior mean estimate of � is also negative though very
close to zero and the 95% credible intervals contain zero and positive values. This implies that
the posterior distribution of �; although mainly located in the negative range, can take positive
values or even zero, which would imply the non-existence of the leverage e¤ect in IGBVL returns.
Overall, these results support the evidence of leverage e¤ects in Latin American stock returns data.
Regarding the results of the S&P 500, the value of the leverage e¤ect is more negative than any
other Latin-American stock market returns.

With respect to the parameter �, the posterior mean estimates of � show that all returns have
similar estimates in the range from 0:196 to 0:271 with the exception of the IGBVL returns, where
the posterior mean estimate of � takes a very high value (0:917) compared to the other returns.
This implies that the variance of the shock �t is large and the log-volatility has more variability
than the other stock returns in Latin America. Indeed, comparing with Alanya and Rodríguez
(2014), this posterior estimate for Peru is around three times larger than the value obtained in the
mentioned reference. This value (jointly with the estimate of �) indicates that the IGBVL is the
most volatile stock market index in the region. As to the posterior mean of �, all returns show
similar results in the range of �19:462 to �8:242.

As mentioned previously, the skewness and the heavy-tailedness of the GH Skew Student�s
t-Distribution are determined jointly by the combination of the parameter values of � and �. With
� �xed, a lower value of � implies a more negative skewness or left-skewness as well as heavier
tails. On the other hand, with � �xed, as � becomes larger the density becomes less skewed and
has lighter tails. The posterior means of � are estimated to be negative for all index returns data
considered. MERVAL has the least value of the posterior mean estimate of � with -0.246, and
the 95% credible interval is negative, implying that the posterior probability that � is negative is
greater than 0.95, and the negativity of � is credible. However, the posterior mean estimates of
� for IGBVL, MEXBOL, IBOVESPA and IPSA are also negative but the 95% credible intervals
contain zero and positive values. We know that when � = 0 in the SVSKt model, it corresponds to
a symmetric student�s t-density. The estimates of � are very close to zero for IGBVL, IBOVESPA
and IPSA, which could imply the case of symmetric heavy-tailed disturbances. Finally, the posterior
means of � are around 35.689 for IGBVL, 12.213 for MERVAL, 19.888 for MEXBOL, 17.502 for
IBOVESPA and 30.252 for IPSA returns.

Figures 9-13 show the density of the GH Skew Student�s t-distribution with the estimates
parameters of Table 3 for the returns considered. Four points are worth mentioning: (i) the
distributions of the IGBVL, MEXBOL, IBOVESPA and IPSA appear to be symmetrical; (ii) in
the cases of symmetric distributions, the MEXBOL and IBOVESPA have heavier tails than the
IGBVL and IPSA; (iii) the distribution of the IGBVL is similar to the Normal distribution; and (iv)
the distribution of the MERVAL have negative skewness (asymmetric) and has heavier tails than the
other returns considered. These results support the evidence of skewed heavy-tailed disturbances
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only for the MERVAL, symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and
IPSA, and symmetric Normal disturbances for the IGBVL.

Regarding the S&P500 daily returns, the results are very similar to Nakajima and Omori (2012).
The posterior mean of � is close to one (0:970) and this fact implies high persistence, more than
the Latin American stock returns considered. The posterior mean of � is estimated to be negative
(�0:686, the more negative than any other Latin-American data) which implies evidence of leverage
e¤ects for the S&P500. Also, the 95% credible intervals are negative, implying that the posterior
probability that � is negative is greater than 0:95, and the negativity of � is credible. The posterior
mean estimate of � is 0:238, which is a similar parameter estimate to the MERVAL, MEXBOL,
IPSA and IBOVESPA returns. The posterior mean of � is �9:418. The posterior mean of � is
estimated to be negative (�0:784). Moreover, the 95% credible intervals are negative, implying
that the posterior probability that � is negative is greater than 0:95, and the negativity of � is
credible. These results support the evidence of skewness. Finally, the posterior means of � are
around 24:868. Figure 14 shows the density of the GH Skew Student�s t-distribution with the
estimated parameters of Table 3 for the US S&P500. The distribution of the S&P500 has more
negative skewness (asymmetric) and heavier tails than the Latin American returns considered. The
negative skewness and heavy tails are more notable in this case.

The indicator of how well the MCMC chain mixes is measured by the ine¢ ciency factor of
the MCMC algorithm de�ned by 1 + 2�1s=1�s, as mentioned before. The ine¢ ciency factor shows
high values for parameters �; � and � for the IGBVL. These results are supported by the initial
MCMC Figure 3 that shows high autocorrelation through iterations of parameters �; � and � for
the IGBVL that decays slowly. The results for the returns of MERVAL, MEXBOL, IBOVESPA and
IPSA show low ine¢ ciency factor values in all parameter estimates, but parameter � and � have
higher ine¢ ciency factor values compared with the other parameters. In general, the ine¢ ciency
factor for the parameters of the S&P500 returns have low values.

Figure 15 shows the log-volatility estimates for the Latin American stock index returns consid-
ered. The results show that there is a similar pattern between periods of higher volatility in the
�ve Latin American returns. Most of the time, these periods of high volatility are associated with
international crises. For example, all returns had a rise in log-volatility in the period from August
to November 1998 due to the Asian crisis, which caused a contagion e¤ect. Also, all stock returns
show a considerable increase in the level of log-volatility for the period September - October 2008
associated with the outbreak of the international �nancial crisis. Another example is in July and
September 2011 due to the European crisis.

Similar volatility patterns observed (Figure 15) may be also raised by observing the levels of
correlation between these variables. Indeed, the most linked series (correlated) with the volatility
of the S&P500 are the IBOVESPA (0.744) and the MEXBOL (0.713). On the opposite side, the
volatility that is least connected or linked to the S&P500 is the IGBVL (0.254). The remaining series
are at intermediate levels: IPSA (0.573) and Merval (0.539). Within Latin America the following
connections can be observed: the volatility of IBOVESPA is most connected with MEXBOL (0.780),
MERVAL (0.619) and IPSA (0.617). For IGBVL volatility (Peru), it shows correlations from 0.40
to 0.42 with the IPSA and MEXBOL. However, compared to other volatilities, such as MERVAL,
correlation is only 0.091.

12



3.3 Model Comparison

In this subsection, we compare two competing models for the daily stock returns: the SVSKt model
and the SVt model (with symmetric Student�s t-disturbances, or equivalently the SVSKt model
with � = 0). Both models compared are allowed to include leverage e¤ects. Model comparison in
a Bayesian framework can be performed using posterior odds. If y = fytgnt=1 denotes the returns
observation vector, then the posterior odds in favor of model A, MA, to model B, MB, is given
by f(MAjy)

f(MB jy) =
f(yjMA)
f(yjMB)

f(MA)
f(MB)

, where f(Mijy) is the posterior probability of the model i, i = A;B,
f(Mi) is the prior probability of the model, and f(yjMi) is the marginal likelihood. The expressions
or ratios f(yjMA)

f(yjMB)
and f(MA)

f(MB)
are called Bayes factor and prior odds, respectively. As is the usual

practice, the prior odds are assumed to be 1; that is, the prior probabilities are assumed to be
equal between competing models, so that the posterior odds ratio is equal to the Bayes factor; see
Asai (2009). The idea is to compare the competing models using their posterior probabilities to
select the one that is the best supported by the data. We choose the model that yields the largest
posterior probability, or, equivalently, the largest marginal likelihood. Thus, we choose model A if
the posterior odds or Bayes factor is greater than 1, and we choose model B if it is less than 1.

The marginal likelihood is de�ned by f(yjMi) =

Z
f(yjMi; �i)f(�ijMi)d�i; this is, the integral of

the likelihood with respect to the prior density of the parameter. To compute the logarithm of the
marginal likelihood, we follow the log marginal likelihood identity of model Mi which is developed
in Chib (1995) and can be written as: log f(yjMi) = log f(yjMi; �i)+ log f(�ijMi)� log f(�ijMi; y);
i = A; B, where �i is the set of unknown parameters for model Mi, f(yjMi; �i) is the likelihood
of the model, f(�ijMi) is the prior probability density, and f(�ijMi; y) is the posterior probability
density. The identity (??) holds for any value of �i, but following Chib (1995), Kim et al. (1998),
Asai (2009), Nakajima (2012) and Nakajima and Omori (2012), we set �i at its posterior mean
calculated using the MCMC samples to obtain a stable estimate of f(yjMi). The prior probability
density can be calculated easily, although the likelihood and posterior part must be evaluated by
simulation; see Nakajima and Omori (2012). The likelihood f(yjMi; �i) can be estimated using
the particle �lter; see for example, Pitt and Shephard (1999), Chib et al. (2002) and Omori et al.
(2007). The posterior probability density f(�ijMi; y) can be estimated using the method developed
by Chib (1995) and Chib and Jeliazkov (2001) with samples obtained through additional but
reduced iterations of the MCMC algorithm.

First, we estimate the SVt model. Figures 16 � 20 show the MCMC estimation results of the
SVt model for IGBVL, MERVAL, MEXBOL, IBOVESPA and IPSA stock returns data. The Table
3 shows the MCMC estimation results of the posterior estimates of the SVt model: the posterior
means, the standard deviation, the 95% credible intervals and the ine¢ ciency factors for the IGBVL,
MERVAL, MEXBOL, IPSA and IBOVESPA stock returns data. The posterior means of estimates
parameter are very similar to the SVSKt model. For example, comparing the half-lives given the
posterior mean of �, the results are almost equal between both models. The only di¤erence is in
the IBOVESPA where the half-life goes from 23.5 to 15.5 days. The other small di¤erence is in
the MEXBOL where half-life shock goes from 21.5 to 22.3 days. Other results are very similar,
including the parameter � in the case of the IGBVL.

In order to compare the competing models, we estimate the log marginal likelihoods, log f(yjMi),
as follows: (i) the likelihood is estimated using the auxiliary particle �lter with 10 000 particles.
It is replicated 10 times to obtain the standard error of the likelihood estimate as in Nakajima
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and Omori (2012), and (ii) the posterior probability density (�ijMi; y) is evaluated through 5 000
additional MCMC runs. Table 4 shows the estimates of the log marginal likelihoods and their
standard errors. We choose the model that yields the largest log marginal likelihood. The SVSKt
model outperforms the SVt model for IGBVL, MERVAL and IBOVESPA stock returns data and
the SVt model outperforms the SVSKt model for MEXBOL and IPSA stock returns data. However,
the following issues are noted: (i) the value of the Log-ML for both models and the �ve countries
are extremely similar. The larger di¤erence is given by the case of the IGBVL; (ii) the posterior
estimates for both models are very similar. That is, parameters are not important in one model,
and the same thing happens using the other model; (iii) the larger di¤erence of the Log-ML is for
the IGBVL. This is explained by the new posterior value for � which is now larger compared to
Table 3. The estimates still indicate high volatility but low persistence of the volatility for these
stock market returns. The very close results of the Log-ML obtained for the other stock markets
could suggest that the SVt model is su¢ cient to model their behavior.

3.4 Prior Sensitivity Analysis

In spite of the computational expense of its implementation, prior sensitivity analysis is an impor-
tant tool in Bayesian inference because it is important to assess the in�uence of prior distribution
on the �nal inference. In order to check prior sensitivity, the posterior distribution of the parame-
ters must be studied using a variety of prior distributions. As in Nakajima and Omori (2012), we
focus on the skewness and heavy-tailedness parameters, � and �, to check the robustness of the
results. We focus only on these parameters because we have assumed the values commonly used
in the previous literature for the prior distributions of �; �; � and �. The prior sensitivity analysis
takes into account the following priors: (i) Prior #1: � � N(0; 1); � � Gamma(16; 0:8)1(� > 4);
(ii) Prior #2: � � N(0; 4); � � Gamma(16; 0:8)1(� > 4); (iii) Prior #3: � � N(0; 1); � �
Gamma(24; 0:6)1(� > 4); (iv) Prior #4: � � N(0; 4); � � Gamma(24; 0:6)1(� > 4); and Prior #5:
� � N(0; 1); � � Gamma(1:2; 0:03)1(� > 4); where the prior mean and prior standard deviation for
Gamma(16; 0:8); Gamma(24; 0:6) and Gamma(1:2; 0:03) are (20; 5), (40; 8) and (40; 36:5), respec-
tively. The prior #1 denotes the prior distribution assumed in the previous estimations. The prior
#5 for � is rather �at compared to priors #1 to #4 and gives less information on �. Table 5 shows
the parameter estimates: posterior means, the standard deviation, the 95% credible intervals, and
the ine¢ ciency factors for � and �.

As regards the IGBVL, we provide a prior sensitivity analysis focusing only in the priors #1,
#2 and #5 because there are problems with the convergence of the chains with priors #3 and #4.
The estimates for � are not a¤ected by changing the priors considered. However, the estimates of �
(estimates are similar using prior #1 and #2) are a¤ected by altering the prior for � from prior #1
or prior #2 to prior #5. The estimates of � get larger (from 36 to 161), implying lighter tails but
similar skewness. The estimates of standard deviations for � and � using the prior #5 are larger
than the estimates using the prior #1 and #2.

The estimates (�; �) for the MERVAL are not a¤ected by changing the prior for � from prior #1
to prior #2, nor from prior #3 to prior #4. However, the estimates of (�; �) are a¤ected by altering
the prior for � from prior #1 to prior #3 (or from prior #2 to prior #4). The estimates of � get
smaller (from �0:25 to �0:42) and the posterior means of � get larger (from 12 to 20), implying
greater skewness and lighter tails. The posterior standard deviations become larger, re�ecting the
increase in the dispersion of the prior distribution for �: When less information on � is given by
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prior #5, the estimates of (�; �) are similar to the estimates obtained by using priors #1 and #2.
The estimates of � for the MEXBOL are not a¤ected by changing the priors considered. The

estimates of � are similar using the priors #1 to #5 (in the range from �0:1076 to �0:0753).
However, the estimates of � (estimates are similar using prior #1, #2 and #5) are a¤ected by
altering the prior for � from prior #1 to prior #3 (or prior #2 to prior #4). The estimates of �
get larger (from 19:5 to 27) from prior #1, #2 and #5 to prior #3 and #4, implying lighter tails
but similar skewness using the priors #3 to #4. The posterior standard deviations become larger
from priors #1 and #2 to priors #3 and #4 and the estimates of standard deviations using prior
#5 are the same for � as for priors #1 and #2, but larger for �:

In the case of the IBOVESPA, the estimates for (�; �) are not a¤ected by changing the prior
from prior #1 to prior #2 or to prior #5, however from prior #1, #2 or #5 to prior #3 (or from
prior #1, #2 or #5 to prior #4) the estimates for (�; �) are greatly a¤ected. The estimates of � and
� get larger from �0:03 to 0:07 and from 17:5 to 29 (average), respectively, implying a disturbance
density that becomes less skewed and has lighter tails. The posterior standard deviations of (�; �)
become larger from prior #1, #2 or #5 to prior #3 (or from prior #1, #2 or #5 to prior #4).

Finally, the estimates of � for the IPSA are not greatly a¤ected by changing the priors con-
sidered. However, the estimates of � are a¤ected by altering the priors from prior #1 or #2 (the
estimates for � are similar with these priors) to prior #3 or #4 (the estimates of � are also similar
with these priors) or to prior #5. The posterior means of � are 30:2 using the priors #1 and #2,
50 (average) using the priors #3 and #4, and 106:4 using the prior #5. This fact implies lighter
tails but similar skewness. The posterior standard deviations of (�; �) become larger from prior
#1, #2 to prior #3 and #4, and the prior #5 has the largest posterior standard deviation (0:43
for � and 36:96 for �).

Therefore, as in Nakajima and Omori (2012), we also observed that the posterior estimate of � is
sensitive to the choice of the prior distribution for � and the posterior estimate of � is also sensitive
to the choice of the prior distribution for � because the skewness and heavy-tailedness of the GH
skew Student�s t-distribution are determined by � and � simultaneously and not individually.

4 Conclusions

In this paper, we estimate a SV model incorporating both leverage e¤ects and skewed heavy-tailed
disturbances by taking into account the GH Skew Student�s t-distribution (SVSKt) for a set of
Latin American stock market returns using the Bayesian estimation method proposed by Nakajima
and Omori (2012). We apply the SVSKt model to the daily returns of �ve Latin American stock
market returns: IGBVL (Peru), MERVAL (Argentina), MEXBOL (Mexico), IPSA (Chile) and
IBOVESPA (Brazil), and we also analyze the U.S. S&P500 returns to compare the results. The
SVSKt model can be considered a �exible model to �t the returns and volatility characteristics
because it is able to model substantially skewed and heavy-tailed data and includes the SV model
with Normal disturbances (SV-Normal) and the SV model with symmetric Student�s t-disturbances
(SVt).

The MCMC estimation results of the SVSKt model show that the sample paths of the iterations
of parameters are stable, and the proposed estimation scheme works well for all returns except
for the IGBVL (the Markov chains do not converge and there is high autocorrelation between
iterations). The posterior mean parameter estimates are consistent with literature indicating the
high persistence of the volatility in stock returns. However, the results show that the IGBVL
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returns have low persistence in comparison to the volatility of the other Latin American stock
returns taken into consideration.

The results support the evidence that there are leverage e¤ects in all returns considered but
there is not enough evidence for the IGBVL. The estimates show that the leverage e¤ect is more
notable in MEXBOL and IBOVESPA, followed by MERVAL and IPSA. In the case of the IGBVL,
the posterior mean estimate of � is negative but very close to zero, which would imply the non-
existence of the leverage e¤ect in the IGBVL returns. Another important result is that the log-
volatility of IGBVL returns have more variability than the other stock returns in Latin American.
Also, the results support the evidence of skewed heavy-tailed disturbances only for the MERVAL,
symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric
Normal disturbances for the IGBVL.

Finally, volatility estimates for daily stock returns show a similar pattern across all the sample
period considered, including similar clustering periods. On the other hand, the model comparison
between SVSKt and SVt model show that the SVSKt model outperforms the SVt model for IGBVL,
MERVAL and IBOVESPA; and the SVt model outperforms the SVSKt model for MEXBOL and
IPSA.
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Appendix A
The GH Skew Student t-Distribution

This Appendix includes some important properties of the GH skewed Student-t distribution. For
a more complete treatment, see Aas and Ha¤ (2006) and Prause (1999). The GH Skew Student
t-Distribution is a limiting case of the GH distribution, which was introduced in Barndor¤-Nielsen
(1977). The univariate GH distribution can be parameterized in several ways. Following, Prause
(1999) and Aas and Ha¤ (2006), the probability density function of a GH random variable x is
given by:

fGH(x;�; �; �; �x; �) =

(�2 � �2)�=2K��1=2

�
�
q
�2 + (x� �x)2

�
exp (�(x� �x))

p
2����1=2��K�

�
�
p
�2 � �2

��q
�2 + (x� �x)2

�1=2�� ; (A.1)

where Kj is the modi�ed Bessel function11 of the third kind of order j and x 2 R. The parameters
must satisfy the conditions:

� � 0; j�j < � if � > 0; (A.2)

� > 0; j�j < � if � = 0;
� > 0; j�j � � if � < 0:

The tails of the GH distribution behave as:

fGH(x) � c jxj��1 exp(�� jxj+ �x) as x! �1; 8�; (A.3)

where c is a constant and hence, as long as j�j 6= �; the GH distribution has two semiheavy tails.
The GH distribution can be represented as a Normal mean-variance mixture with Generalized

Inverse Gaussian (GIG) distribution as a mixing distribution. This means that a GH variable X
can be represented as:

X = �X + �Z +
p
Z�; � � N(0; 1); Z � GIG(�; �; 
); (A.4)

with � and Z independent and 
 =
p
�2 � �2. It follows from (A.4) that X j Z = z � N(�X +

�Z;Z). The density of the GIG distribution is given by:

fGIG(z;�; �; 
) =
�

�

�� z��1

2K�(
�)
exp[�1

2
(�2z�1 + 
2z)]: (A.5)

11The modi�ed Bessel function of the third kind with order j, which we denote as Kj(:), has the integral repre-
sentation: Kj(ex) = 1

2

R1
0
!��1 expf� 1

2
ex(! + !�1)d!g, x > 0: Some properties of Kj(ex), taken from Abramowitz

and Stegun (1972), are: (i) Kj(ex) = K�j(ex); (ii) asymptotic relations for small argument ex are given by: Kj(ex) �
�(j)2j�1ex�j as ex! 0 and j > 0; Kj(ex) � �(�j)2�j�1ex�j as ex! 0 and j > 0; K0(ex) � � ln(ex); (iii) an asymptotic
relation for large arguments ex is given byKj(ex) �p �

2ex exp(�ex) as ex!1; (iv) if j = n+1=2, n 2 Z,Kj can be calcu-

lated as follows: Kn+ 1
2
(ex) =p �

2ex exp(�ex)[1 +Pn
i=1

(n+i)!
(n�i)!i! (2ex)�i], n 2 N; (v) K�0:5(ex) = K0:5(ex) =p �

2ex exp(�ex).
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Letting � = ��=2 (� > 0) and � ! j�j in equation (A.1) (that is, 
 = 0), we obtain the GH
Skew Student t-Distribution. Its probability density function is given by:

fGHskewt(!; �; �; �x; �) =
2
1��
2 �� j�j

�+1
2 K �+1

2
[
q
�2[�2 + (x� �x)2]] exp (� (x� �x))

�(�2 )
p
�[
q
�2 + (x� �x)2]

�+1
2

; (A.6)

and

fGHskewt(!; �; �; �!) =
�(�+12 )p
���(�2 )

"
1 +

(x� �x)2

�2

#�(�+1)=2
; (A.7)

for � 6= 0 and � = 0, respectively and where �(:) is the gamma function. The density fGHskewt(x; �; �; �!)
in (A.7) is known as the noncentral Student�s t-distribution with � degrees of freedom, expectation
�x, and variance �

2=(� � 2).
The �rst four moments of a GH skew Student t-distributed random variable X are:

E(X) = �+
��2

� � 2 ; (A.8)

V ar(X) =
2�2�4

(� � 2)2(� � 4) +
�2

� � 2 ; (A.9)

Skewness(X) =
2(� � 4)1=2���

2�2�2 + (� � 2)(� � 4)
�3=2 �3(� � 2) + 8�2�2� � 6

�
; (A.10)

Kurtosis(X) =
6�

2�2�2 + (� � 2)(� � 4)
�2 � (A.11)�

(� � 2)2(� � 4) + 16�
4�2(� � 2)(� � 4)

� � 6 +
8�4�4(5� � 22)
(� � 6)(� � 8)

�
:

We observe that for the mean and variance to exist, � > 2 and � > 4, respectively. The variance
is only �nite when � > 4, as opposed to the symmetric Student�s t-distribution. Furthermore,
skewness and (excess) kurtosis are de�ned only if � > 6 and � > 8, respectively. It follows from
equation (A.3) that in the tails, the GH skew t-density is given by:

fGHskewt(x) � c jxj��=2�1 exp(� j�xj+ �x) as x! �1: (A.12)

Thus, we have a heavy tail decaying as:

fGHskewt(x) � c jxj��=2�1 if
n
� < 0 and x! �1
� > 0 and x! +1

o
; (A.13)

and a light tail decaying as

fGHskewt(x) � c jxj��=2�1 exp(�2 j�xj) if
n
� < 0 and x! +1
� > 0 and x! �1

o
: (A.14)

Thus the GH skew t-distribution has one heavy and one semiheavy tail. The heavy tail shows
polynomial and the light tail exponential behavior. It is the only member of GH family of distribu-
tions to have this property. Thus the GH skew student t-distribution is able to model substantially
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skewed and heavy tailed data, as found for example in �nancial markets. The tails of the GH skew
student t-distribution are characterized solely by parameters � and �, which jointly determine the
degree of skewness and heavy tailedness. Finally, note that the heavy tail of the GH skew student
t-distribution is heavier than the tails of the symmetric Student t-distribution, which have two tails
decaying as polynomials and decay as:

fGHt(x) � const jxj���1 as x! �1: (A.15)

Appendix B
The MCMC Algorithm for the SVSKt Model

This Appendix includes each sampling step, in detail, of the MCMC algorithm proposed by Naka-
jima and Omori (2012) for the SVSKt model. For the prior distributions of � and �; they assume
� � N(�0; �20) and � � N(�0; �20).

B.1 Generation of the parameters (�, �, �, �) (steps 2�4)

Step 2. The conditional posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is

�(�j:) / �(�)

q
1� �2 exp

(
�(1� �

2)h
2
1

2�2
�
n�1X
t=1

(ht+1 � �ht � yt)2
2�2(1� �2)

)

/ �(�)

q
1� �2 exp

(
�
(�� ��)2

2�2�

)
; (A.16)

where ht = ht � �, yt = ��(yte
�ht=2 � �zt)=

p
zt, zt = zt � �z, �� =

Xn�1

t=1
(ht+1�yt)ht

�2h
2
1+

Xn�1

t=2
h
2
t

and

�2� =
�2(1��2)

�2h
2
1+

Xn�1

t=2
h
2
t

. In order to sample from this conditional posterior distribution, Nakajima

and Omori (2012) implement the Metropolis�Hastings (MH) algorithm. They propose a candidate,
�� � TN(�1;1)(��; �

2
�), where TN(a;b)(�; �

2) denotes the Normal distribution with mean � and
variance �2 truncated on the interval (a; b). Then, they accept it with the probability given by

minf�(�
�)
p
1���2

�(�)
p
1��2

; 1g:

Step 3. Because the joint conditional posterior probability density �(# j �; �; �; �; h; z; y)(� �(#j�))

of # = (�; �)0 is given by �(#j�) / �(#)�n(1 � �2)n�12 expf� (1��2)h21
2�2

�
Xn�1

t=1

(ht+1��ht�yt)2
2�2(1��2) g; we

have a probability density from which it is not easy to sample. Nakajima and Omori (2012)
apply the MH algorithm based on a Normal approximation of the density around the mode.
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As there is a constraint, R = f# : � > 0; j�j < 1g, on the parameter space of the poste-
rior distribution, they consider the transformation # to ! = (!1; !2)

0, where !1 = log �, and
!2 = log(1+�)� log(1��), to generate a candidate using a Normal distribution. They �rst search
for b# that approximately maximizes �(#j:), and obtain its transformed value b!. They next gener-
ate a candidate !� � N(!�;��), where !� = b! + �� @ log e�(!j�)@!

���
!=e! and ��1� = �@2 log e�(!j�)

@!@!0

���
!=e! ;

where e�(!j�) is a transformed conditional posterior density. Then, they accept the candidate !�
with probability minf �(#

�j�)fN (!j!�;��)jJ(#)j
�(#j�)fN (!�j!�;��)jJ(#�)j ; 1g; where fN (xj�;�) denotes the probability density

function of a Normal distribution with mean � and covariance matrix �, and J(�) is the Jacobian
for the transformation, that is, J(#) = j d!

d#0
j+ = 2

�(1��2) . The values of (#; #
�) are evaluated at

(!; !�), respectively.

Step 4. The conditional posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is given

by �(�j�) / expf� (���0)2
2�20

� (1��2)h21
2�2

�
Xn�1

t=1

f(ht+1��)��(ht��)�ytg2
2�2(1��2) g; from which Nakajima and

Omori (2012) generate �j� � N(b�; �2�); where �2� = f 1
�20
+ (1��2)(1��2)+(n�1)(1��)2

�2(1��2) g�1; and b� =
�2�f

�0
�20
+

(1��2)(1��2)h1+(1��)
Xn�1

t=1
(ht+1��ht�yt)2

�2(1��2) g:

B.2 Generation of skew-t parameters (�, �, z) (steps 5�7)

Step 5. The posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is given by �(�j�) /
expf� (���0)2

2�20
�
Xn

t=1

(yt��zteht=2)2
2zteht

�
Xn�1

t=1

fht+1��ht���(yte�ht=2��zt)=
p
ztg2

2�2(1��2) g; from which they gen-

erate �j� � N(��; �2) where �2� = f 1�20 +
1

1��2
Xn�1

t=1

z2t
zt
+ z2n

zn
g�1; and

�� = �
2
�f

�
�20
+ 1

1��2
Xn�1

t=1

ytzt
zteht=2

+ ynzn
znehn=2

� �
�(1��2)

Xn�1

t=1

(ht+1��ht)ztp
zt

g:

Step 6. Because, as in Step 3, it is not easy to sample directly from the posterior probability density

of �, �(�j�) / �(�)
Yn

t=1

(�=2)�=2

�(�=2) z
��=2
t exp(� �

2zt) exp
n
�
Xn

t=1

(yt��zteht=2)2
2zteht

�
Xn�1

t=1

(ht+1��ht�yt)2
2�2(1��2)

o
;

for � > 4, they draw a sample of � using the MH algorithm based on the Normal approximation
of the posterior probability density. They generate a candidate �� using a Normal distribution
truncated on the interval (4;1).

Step 7. The conditional posterior probability density of the latent variable zt is �(zt j �; h; y) /

g(zt)�z
�( �+1

2
+1)

t exp(� �
2zt
); and g(zt) = exp

n
� (yt��zteht=2)2

2zteht
� (ht+1��ht�yt)2

2�2(1��2) 1(t < n)
o
; where 1(�)

is an indicator function. Using the MH algorithm, they generate a candidate z�t � IG(�+12 ;
�
2 ) and

accept it with probability minfg(z
�
t )

g(zt)
; 1g.

B.3 Generation of volatility latent variable h (step 8)

Step 8. Nakajima and Omori (2012) extend the method developed by Omori and Watanabe (2008)
for sampling ht in the SVSKt model using the multi-move sampler, where the e¢ cient strategy is
to sample from the conditional posterior distribution of h = fhtgnt=1 by dividing it into several

A-4



blocks and by sampling each block given the other blocks. The details of the multi-move sampler
are described in Appendix C.

Appendix C
The Multi-Move Sampler for the SVSKt Model

Extending the algorithm of Omori and Watanabe (2008), Nakajima and Omori (2012) describe the
multi-move sampler for sampling the volatility variable h in the SVSKt model. De�ning �t = ht��;
for t = 0; : : : ; n and 
 = exp(�=2), they consider the state-space model with respect to f�tgnt=1 as:

yt = f�zt +
p
zt�tg exp(�t=2); t = 1; : : : ; n; (A.17)

�t+1 = ��t + �t; t = 0; : : : ; n� 1: (A.18)

Let e� = (�; �r; �r+d+1; zr; : : : ; zr+d; yr; : : : ; yr+d). To sample a block (�r+1; : : : ; �r+d) from its joint
conditional posterior density using the MH algorithm, (r � 0; d � 1; r + d � n), they sample
disturbances

(�r; : : : ; �r+d�1) � �(�r; : : : �r+d�1 j e�) / r+dY
t=r

1p
2�e�t exp

�
�(yt � e�t)2

2e�2t
�
�
r+d�1Y
t=r

f(�t)� f(�r+d);

where e�t = f�zt + �tpzt(�t+1 � ��t)=�g exp(�t=2)
; e�2t = (1� �2t )zt exp(�t)
2;
f(�r+d) = expf� (�r+d+1���r+d)2

2�2
g1(r + d < n); and �t = �1(r + d < n). To determine the

block (r and d), they use the stochastic knots; see, for example, Shephard and Pitt (1997). Let
� = (�r; : : : ; �r+d�1)

0 and � = (�r+1; : : : ; �r+d)
0. To construct a proposal density based on the

Normal approximation of the posterior density of �, they �rst de�ne:

L =
r+dX
t=r

�
��t
2
� (yt � e�t)2

2e�2t
�
+ log f(�r+d);

� = (�r+1; : : : ; �r+d)
0; �t =

@L

@�t
;

Q = �E( @
2L

@�@�0
) =

266664
Ar+1 Br+2 0 : : : 0
Br+2 Ar+2 Br+3 : : : 0

0 Br+3 Ar+3
. . .

...
...

. . . . . . . . . Br+d
0 : : : 0 Br+d Ar+d

377775 ;
At = �E(@

2L

@�2t
);

Bt = �E( @2L

@�t@�t�1
);
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for t = r + 2; : : : ; r + d; and Br+1 = 0. For the second derivatives, they take the expectations with
respect to y0ts and obtain

At =
1

2
+
1e�2t
�
@e�t
@�t

�2
+

1e�2t�1
�
@e�t�1
@�t

�2
+
�2

�2
1(t=r + d < n); and

Bt =
1e�2t�1 � @e�t�1

@�t�1
�
@e�t�1
@�t

:

Applying the second-order Taylor expansion to the log of the posterior density around the mode,
� = b�, they obtain an approximate Normal density as follows:
log �(�je�) � bL+ @L

@�0

����
�=b� (� � b�) + 12(� � b�)0 E( @

2L

@�@�0
)

����
�=b� (� � b�) +

r+d�1X
t=r

(�1
2
�2t ) + (c);

= bL+ b�0(�� b�)� 1
2
(�� b�)0 bQ(�� b�) + r+d�1X

t=r

(�1
2
�2t ) + (c);

� log q(�je�);
where c is a constant, bL, b� and bQ is the value of L; � and Q at � = b� (or, equivalently at � = b�).
It can be shown that the proposal density q(�je�) is the posterior density of � for a linear Gaussian
state-space model given by (A.19)-(A.21). The mode b� can be obtained by repeating the following
algorithm until it converges:

1. Initialize b� and compute b� at � = b� using the state equation (14) recursively;
2. Evaluate b�0s; bA0ts and bB0ts at � = b�;
3. Let bDr+1 = bAr+1 and bbr+1 = b�r+1. Compute the following variables recursively for t =
r + 2; : : : ; r + d: bDt = bAt � bD�1t�1 bB2t ; bKt =qbDt; bbt = b�t � bBt bD�1t�1bbt�1; and bBd+r+1 = 0;

4. De�ne an auxiliary variable byt = b
t + bD�1t bbt; where b
t = b�t � bD�1t bBt+1b�t+1; for t = r +

1; : : : ; r + d, and b�r+d+1 = �r+d+1;
5. Consider the linear Gaussian state-space model formulated by:

byt = Zt�t +Gt�t; t = r + 1; : : : ; r + d (A.19)

�t+1 = ��t +Ht�t; t = r; : : : ; r + d (A.20)

�t � N(0; I2); (A.21)

where zt = 1+� bD�1t bBt+1; Gt = ( bK�1
t ; bD�1t bBt+1�); and Ht = (0; �), for t = r+1; : : : ; r+d and

H0 = (0;
�p
1��2

). Apply the Kalman �lter and the disturbance smoother to this state-space

model, and obtain the posterior mode b� and b�;
6. Go to 2.
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In the MCMC sampling procedure, the current sample of � may be taken as an initial value of
the b� in Step 1. To sample � from the conditional posterior density, Nakajima and Omori (2012)
implement the AR (Accept-Reject)-MH algorithm via the simulation smoother using the modeb� to obtain the approximated linear Gaussian state-space model (A.19)-(A.21). See Omori and
Watanabe (2008) and Takahashi et al. (2009) for details of the AR-MH algorithm.
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Table 1. Summary Statistics for Daily Stock Returns Data

Index Obs. Mean S.D. Skewness Excess Kurtosis Min. Max.

IGBVL (Peru) 3246 0.0008 0.0149 -0.5287 10.8286 -0.1329 0.1282

MERVAL (Argentina) 4439 0.0005 0.0215 -0.2801 5.3395 -0.1476 0.1612

MEXBOL (México) 4529 0.0006 0.0151 0.0300 6.9916 -0.1431 0.1215

IBOVESPA (Brazil) 4456 0.0006 0.0213 0.2994 13.1430 -0.1723 0.2882

IPSA (Chile) 4489 0.0003 0.0111 0.1332 7.9881 -0.0767 0.1180

S&P500 (USA) 4531 0.0002 0.0127 -0.2272 7.4884 -0.0947 0.1096
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Table 3. MCMC Estimation Results of the SVt Model

Parameter Mean S.D. 95% interval Ine¢ ciency

(i) IGBVL (Peru)

� 0.8613 0.0209 [ 0.8183, 0.9024 ] 407.89

� 0.9823 0.0964 [ 0.7655, 1.1565 ] 634.21

� -0.0382 0.0386 [ -0.1122, 0.0401 ] 104.68

� -8.7154 0.1639 [ -9.0253, -8.3828 ] 156.46

� 36.1646 5.7485 [ 26.2375, 48.8401 ] 105.50

(ii) MERVAL (Argentina)

� 0.9533 0.0081 [ 0.9358, 0.9674 ] 103.72

� 0.2707 0.0244 [ 0.2279, 0.3256 ] 197.98

� -0.2810 0.0434 [ -0.3652, -0.1945 ] 52.60

� -8.2351 0.0948 [ -8.4186, -8.0462 ] 20.95

� 12.3573 1.9107 [ 9.2705, 16.8398 ] 253.81

(iii) MEXBOL (Mexico)

� 0.9694 0.0054 [ 0.9584, 0.9788 ] 74.32

� 0.2282 0.0178 [ 0.1973, 0.2661 ] 160.80

� -0.4037 0.0471 [ -0.4951, -0.3126 ] 94.09

� -8.9333 0.1122 [ -9.1537, -8.7119 ] 17.26

� 17.2837 3.2351 [ 12.0182, 24.5254 ] 280.95

(iv) IBOVESPA (Brazil)

� 0.9564 0.0067 [ 0.9423, 0.9687 ] 59.67

� 0.2528 0.0176 [ 0.2219, 0.2912 ] 169.99

� -0.3244 0.0447 [ -0.4091, -0.2330 ] 46.67

� -8.2198 0.0907 [ -8.3970, -8.0400 ] 11.09

� 20.1754 3.1531 [ 14.8120, 26.9762 ] 245.94

(v) IPSA (Chile)

� 0.9649 0.0061 [ 0.9521, 0.9759 ] 85.17

� 0.2253 0.0205 [ 0.1899, 0.2718 ] 283.75

� -0.2928 0.0438 [ -0.3754, -0.2059 ] 43.86

� -9.4536 0.1004 [ -9.6466, -9.2478 ] 23.10

� 29.8385 4.8740 [ 21.3740, 40.5813 ] 165.48
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Table 4. Estimated Log Marginal Likelihoods (Log-ML)

SVSKt SVt

(i) IGBVL (Peru) 9812.000 9781.776

(1.582) (1.557)

(ii) MERVAL (Argentina) 11469.963 11464.903

(0.806) (0.684)

(iii) MEXBOL (Mexico) 13377.385 13380.232

(0.580) (0.704)

(iv) IBOVESPA (Brazil) 11624.206 11614.349

(0.996) (0.627)

(v) IPSA (Chile) 14583.355 14586.065

(0.557) (0.653)

*Standard errors of the log-ML in parentheses.
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Table 5. Prior Sensitivity Analysis for the SVSKt Model

Prior #1 Prior #2 Prior #3 Prior #4 Prior #5

(i) IGBVL (Peru)

-0.0286 (0.150) -0.028 (0.1489) -0.027 (0.310)

� [-0.3247, 0.267] [-0.320, 0.2675] [-0.640, 0.588]

16.87 15.71 9.72

35.689 (5.492) 36.728 (5.5969) 161.054 (56.355)

� [25.974, 47.258] [26.576, 48.3670] [76.066, 297.526]

88.54 114.07 291.47

(ii) MERVAL (Argentina)

-0.246 (0.081) -0.258 (0.084) -0.412 (0.1556) -0.4222 (0.150) -0.252 (0.082)

� [-0.418, -0.095] [-0.437, -0.102] [-0.766, -0.1460] [-0.7691, -0.174] [-0.431, -0.107]

82.38 73.46 106.15 146.31 91.94

12.213 (1.782) 12.456 (1.832) 20.164 (4.5284) 19.0319 (4.229) 11.143 (1.880)

� [9.044, 15.929] [9.416, 16.407] [12.939, 30.7610] [12.7557, 28.736] [8.093, 15.079]

286.25 320.19 379.97 410.92 309.20

(iii) MEXBOL (Mexico)

-0.107 (0.119) -0.101 (0.111) -0.082 (0.156) -0.075 (0.157) -0.085 (0.119)

� [-0.338, 0.132] [-0.316, 0.122] [-0.379, 0.232] [-0.375, 0.240] [-0.309, 0.169]

37.20 36.08 40.87 50.87 59.73

19.888 (3.223) 18.171 (3.056) 27.653 (5.141) 26.508 (5.093) 19.509 (5.378)

� [14.296, 27.229] [13.467, 25.652] [19.155, 39.184] [17.759, 38.135] [12.768, 34.492]

265.91 260.93 287.83 270.82 469.37

(iv) IBOVESPA (Brazil)

-0.034 (0.110) -0.037 (0.113) 0.077 (0.208) 0.065 (0.191) -0.036 (0.127)

� [-0.243, 0.195] [-0.245, 0.204] [-0.307, 0.524] [-0.275, 0.483] [-0.267, 0.252]

38.07 44.98 50.19 63.74 94.28

17.502 (2.630) 17.646 (3.099) 31.492 (6.457) 28.300 (5.648) 18.649 (4.511)

� [13.148, 23.300] [12.756, 24.924] [19.552, 46.088] [19.327, 40.657] [13.0256, 30.774]

159.85 276.67 309.95 252.38 396.59

(v) IPSA (Chile)

-0.085 (0.1872) -0.089 (0.195) -0.081 (0.288) -0.113 (0.2703) -0.138 (0.438)

� [-0.447, 0.2858] [-0.483, 0.283] [-0.676, 0.456] [-0.630, 0.4476] [-1.028, 0.702]

37.72 56.60 56.82 25.53 36.74

30.252 (5.1130) 30.239 (4.755) 49.258 (8.425) 50.622 (9.0323) 106.411 (36.962)

� [21.129, 41.1597] [22.293, 40.970] [34.818, 67.331] [35.150, 70.4570] [48.214, 189.172]

166.06 187.32 115.43 194.78 327.33

The �rst row: posterior mean and standard deviation in parenthesis; the second row:

95% credible intervals in square brackets; the third row: ine¢ ciency factor.
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Figure 1. Densities of the GH Skew Student�s t-distribution. Parameter � varying using � = 0 (symmetric
t), �2 and �4 with � = 10 �xed (Top); and parameter � varying using � = 5, 10 and 15 with � = �2

�xed (Bottom).
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Figure 2. Times series plots for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, IBOVESPA, MEXBOL,
IPSA and S&P500 (1996/01/02 - 2013/12/30) daily returns.
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Figure 3. MCMC estimation results of the SVSKt model for IGBVL data (Peru). Sample autocorrelations
(Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 4. MCMC estimation results of the SVSKt model for MERVAL data (Argentina). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 5. MCMC estimation results of the SVSKt model for MEXBOL data (Mexico). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 6. MCMC estimation results of the SVSKt model for IBOVESPA data (Brazil). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

F-4



0 300600900

0

1 φ

0 300600900

0

1 σ

0 300600900

0

1 ρ

0 300600900

0

1 µ

0 300600900

0

1 β

0 300600900

0

1 ν

0 1000020000
0 .94

0 .96

0 .98

φ

0 1000020000

0 .20

0 .25

0 .30
σ

0 1000020000

­0 .4

­0 .3

­0 .2

ρ

0 1000020000

­9 .75

­9 .50

­9 .25
µ

0 1000020000

­0 .5

0 .0

0 .5

β

0 1000020000

30

50

ν

0 .9250 .950 .975

25

50

75 φ

0 .150 .20 .250 .3

10

20
σ

­0 .4­0 .3­0 .2

2 .5

5 .0

7 .5

10.0 ρ

­10 ­9 .5 ­9

2

4
µ

­0 .5 0 .5

1

2
β

20 40 60

0 .025

0 .050

0 .075

ν

Figure 7. MCMC estimation results of the SVSKt model for IPSA data (Chile). Sample autocorrelations
(Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 8. MCMC estimation results of the SVSKt model for S&P500 data (US). Sample autocorrelations
(Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 9. Density of the GH Skew Student�s t-distribution with parameyters � = �0:0286 and
� = 35:6892 for IGBVL Data (Peru)

Figure 10. Density of the GH Skew Student�s t-distribution with parameters � = �0:2464 and
� = 12:2135 for MERVAL Data (Argentina)
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Figure 11. Density of the GH Skew Student�s t-distribution with parameters � = �0:1076 and
� = 19:8882 for MEXBOL Data (Mexico)

Figure 12. Density of the GH Skew Student�s t-distribution with parameters � = �0:0342 and
� = 17:5026 for IBOVESPA Data (Brazil)
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Figure 13. Density of the GH Skew Student�s t-distribution with parameters � = �0:0853 and
� = 30:2523 for IPSA Data (Chile)

Figure 14. Density of the GH Skew Student�s t-distribution with parameters � = �0:7842 and
� = 24:8685 for S&P500 Data (U.S.)
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Figure 15. Log-volatility for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, MEXBOL, IPSA,
IBOVESPA and S&P500 (1996/01/02 - 2013/12/30) daily returns.
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Figure 16. MCMC estimation results of the SVt model for IGBVL data (Peru). Sample autocorrelations
(Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 17. MCMC estimation results of the SVt model for MERVAL data (Argentina). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 18. MCMC estimation results of the SVt model for MEXBOL data (Mexico). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 19. MCMC estimation results of the SVt model for IBOVESPA data (Brazil). Sample
autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
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Figure 20. MCMC estimation results of the SVt model for IPSA data (Chile). Sample autocorrelations
(Top), sample paths (Middle) and posterior densities (Bottom).
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