A STOCHASTIC VOLATILITY MODEL WITH GH SKEW STUDENT’S t-DISTRIBUTION: APPLICATION TO LATIN-AMERICAN STOCK RETURNS

Patricia Lengua Lafosse, Cristian Bayes y Gabriel Rodríguez
A STOCHASTIC VOLATILITY MODEL WITH GH SKEW STUDENT’S t-DISTRIBUTION: APPLICATION TO LATIN-AMERICAN STOCK RETURNS

Patricia Lengua Lafosse, Cristian Bayes y Gabriel Rodríguez

Julio, 2015
Patricia Lengua Lafosse, Cristian Bayes y Gabriel Rodríguez

A Stochastic Volatility Model with GH Skew Student’s t Distribution: Application to Latin-American Stock Returns
Lima, Departamento de Economía, 2015
(Documento de Trabajo 405)

PALABRAS CLAVE: Volatilidad Estocástica, Distribución Hiperbólica Generalizada Sesgada t-Student, Estimación Bayesiana, Cadenas de Markov de Monte Carlo, Retornos Bursátiles, América Latina.

Las opiniones y recomendaciones vertidas en estos documentos son responsabilidad de sus autores y no representan necesariamente los puntos de vista del Departamento Economía.
A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns

Patricia Lengua Lafosse
Pontificia Universidad Católica del Perú

Cristian Bayes
Pontificia Universidad Católica del Perú

Gabriel Rodríguez
Pontificia Universidad Católica del Perú

Abstract

This paper presents an empirical study of a stochastic volatility (SV) model for daily stocks returns data of a set of Latin-American countries (Argentina, Brazil, Chile, Mexico and Peru) for the sample period 1996:01-2013:12. We estimate SV models incorporating both leverage effects and skewed heavy-tailed disturbances taking into account the GH Skew Student’s t-distribution using the Bayesian estimation method proposed by Nakajima and Omori (2012). A model comparison between the competing SV models with symmetric Student’s t-disturbances is provided using the log marginal likelihoods and a prior sensitivity analysis is also provided. The results suggest that there are leverage effects in all returns considered but there is not enough evidence for the case of Peru. Furthermore, skewed heavy-tailed disturbances are confirmed only for Argentina, symmetric heavy-tailed disturbances for Mexico, Brazil and Chile, and symmetric Normal disturbances for Peru. Furthermore, we find that the GH Skew Student’s t-disturbance distribution in the SV model is successful in describing the distribution of the daily stock return data for Peru, Argentina and Brazil over the traditional symmetric Student’s t-disturbance distribution.

KeyWords: Stochastic Volatility, Generalized Hyperbolic Skew Student’s t-Distribution, Bayesian Estimation, Markov Chain Monte Carlo, Stock Returns, Latin American Stock.

JEL Classification: C11, C58.

This work presents an empirical analysis of a stochastic volatility (SV) model for daily stock returns data of a set of Latin-American countries (Argentina, Brazil, Chile, Mexico and Peru) for the sample period 1996:01-2013:12. We estimate SV models that incorporate both leverage effects and skewed heavy-tailed disturbances by considering the GH Skew Student’s t-distribution using the Bayesian estimation method proposed by Nakajima and Omori (2012). A model comparison between the SV models with symmetric Student’s t-disturbances is conducted using the log marginal likelihoods and a prior sensitivity analysis is also provided. The results indicate the presence of leverage effects in all considered returns, although there is insufficient evidence for Peru. Furthermore, skewed heavy-tailed disturbances are confirmed only for Argentina, while symmetric heavy-tailed disturbances are observed for Mexico, Brazil, and Chile, and symmetric Normal disturbances for Peru. Additionally, we find that the GH Skew Student’s t-disturbance distribution in the SV model successfully describes the distribution of the daily stock return data for Peru, Argentina, and Brazil, surpassing the traditional symmetric Student’s t-disturbance distribution.

KeyWords: Stochastic Volatility, Generalized Hyperbolic Skew Student’s t-Distribution, Bayesian Estimation, Markov Chain Monte Carlo, Stock Returns, Latin American Stock.

JEL Classification: C11, C58.

Este trabajo presenta una aplicación empírica de un modelo de volatilidad estocástica (SV) aplicado a los retornos bursátiles diarios de un grupo de países de América Latina (Argentina, Brasil, Chile, México y Perú) para el período 1996:01-2013:12. Se estima un modelo SV que incorpora tanto los efectos de apalancamiento, sesgo en la distribución y colas pesadas usando una distribución t-Student Generalizada Hiperbólica usando el algoritmo Bayesiano propuesto por Nakajima and Omori (2012). Los resultados del modelo se comparan con modelos de volatilidad estocástica con distribución t-Student simétrica mediante el uso del logaritmo de las verosimilitudes marginales. Asimismo, un análisis de sensibilidad a las prioris es proporcionado. Los resultados sugieren que hay efectos de apalancamiento en todos los conjuntos de retornos considerados aunque no hay evidencia concluyente para el caso de Perú. De otro lado, perturbaciones sesgadas con colas pesadas son confirmadas para Argentina, mientras que la existencia de colas pesadas es obtenida para México, Brasil y Chile y perturbaciones Normales simétricas en el caso del Perú. En general, encontramos que la distribución GH Skew t-Student es adecuada en la modelación de los retornos diarios de Perú, Argentina y Brasil en comparación con los modelos tradicionales con distribución simétrica t-Student.

Palabras Claves: Volatilidad Estocástica, Distribución Hiperbólica Generalizada Sesgada t-Student, Estimación Bayesiana, Cadenas de Markov de Monte Carlo, Retornos Bursátiles, América Latina.

Classificación JEL: C11, C58.
A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns

Patricia Lengua Lafosse
Pontificia Universidad Católica del Perú

Cristian Bayes
Pontificia Universidad Católica del Perú

Gabriel Rodríguez
Pontificia Universidad Católica del Perú

1 Introduction

Returns from financial market variables such as stock and exchange rate are characterized by some important stylized facts or properties that are found in almost all sets of daily returns: (i) returns are not normally distributed; instead, the characteristics of the return distributions are excess of kurtosis (leptokurtic) and some degree of skewness compared with the Normal distribution; (ii) there is almost no correlation between returns for different lags; and (iii) functions of returns can have substantial autocorrelations. For example, the autocorrelation of both absolute returns and squared returns are positive for many lags and statistically significant (Taylor, 2005). These properties are explained in most cases by the presence of time-varying volatility and volatility clustering over time. See Humala and Rodríguez (2013) for a list of stylized facts concerning Peruvian stock and Forex markets.

Modelling time-varying volatility has been widely used in the literature on financial time series, as the demand for volatility forecasts has increased as a means of assessing financial risk. Two approaches that have proven useful are the autoregressive conditional heteroskedasticity (ARCH) family, including the ARCH model developed by Engle (1982), the generalized ARCH (GARCH) model of Bollerslev (1986), and the stochastic volatility (SV) model, first introduced by Taylor (1982), then Taylor (1986), which was the first detailed published exploration of the problem of volatility modelling in finance. For extensive reviews, see Bollerslev et al. (1994) and Engle (1995) for the ARCH family models, and Shephard (2005) for a comprehensive explanation of the SV models. Both approaches attempt to model and reproduce the principal properties of the asset returns; however, the difference is that ARCH models explicitly model and specify a process for the conditional variance of returns given past returns observed, while the SV models involve specifying a stochastic process for volatility and this is modelled as an unobserved variable.

Departures from Normality have given rise to propositions of other distributions in order to capture heavy-tailedness of the asset return distribution in the SV class of models. Heavy-tailed
disturbances are often incorporated using distributions such as Student’s t-distribution; see, for example, Harvey et al. (1994), Liesenfeld and Jung (2000), Chib et al. (2002), Berg et al. (2004), Jacquier et al. (2004), Omori et al. (2007), Asai (2008), Choy et al. (2008), Nakajima and Omori (2009), Asai and McAleer (2011), Wang et al. (2011), Nakajima (2012) and Delatola and Griffin (2013); the Normal Inverse Gaussian distribution (NIG), see Barndorff-Nielsen (1997) and Andersen (2001); the Generalized Error Distribution (GED), see Liesenfeld and Jung (2000); the Generalized-t distribution (GT), see Wang (2012) and Wang et al. (2013); a class of mixtures of Normal distributions, see Abanto-Valle et al. (2010), Asai (2009); to allow simultaneous treatment of skewness and heavy tails in the conditional distribution of returns, Skew-GED distribution, see Cappuccio et al. (2004), Cappuccio et al. (2006); the Extended Generalized Inverse Gaussian (EGIG), see Silva et al. (2006); the Skew Student’s t-distribution, see Tsionas (2012); Abanto-Valle et al. (2013) and the Generalized Hyperbolic (GH) Skew Student’s t-distribution, see Nakajima and Omori (2012), Trojan (2013).4

Another characteristic of the return distribution for financial variables is the asymmetric response of volatility known as the leverage effect: negative past innovations on asset returns tend to increase the current volatility. First noted by Black (1976) and studied by Nelson (1991) and Yu (2005), leverage effect refers to the tendency for changes in asset prices to be negatively correlated with changes in asset volatility. Leverage effect is an important stylized fact of, especially, stock return and has prompted consideration of asymmetric extensions of the basic SV model.

Time-varying volatility for financial variables of developed economies have been studied extensively; however, empirical studies of the Latin American stock market returns heretofore are very scarce. The volatility characteristics of the financial markets in Latin America are far from being thoroughly analyzed despite their growth in recent years.5 The main aim of this paper is to estimate SV models incorporating both leverage effects and skewed heavy-tailed disturbances by taking into account the GH Skew Student’s t-distribution for the Latin American stock markets returns and using the Bayesian estimation method proposed by Nakajima and Omori (2012). The GH skew Student’s t-distribution includes Normal and Student’s t-distributions as special cases. Therefore, the SV model using the GH Skew Student’s t-distribution (SVSKt model) can take a flexible form to fit the returns and volatility characteristics because the SVSKt model is able to model substantially skewed and heavy-tailed data and includes the SV model with Normal disturbances (SV-Normal) and the SV model with symmetric Student’s t-disturbances (SVt). We apply the SVSKt model to the daily returns of five Latin American stock market returns: Peru, Argentina, Mexico, Chile and Brazil. We also include the S&P500 returns in order to perform some comparisons.

The GH Skew Student’s t-distribution has been studied by Aas and Haff (2006) and briefly mentioned by Prause (1999) and Jones and Faddy (2003). It belongs to the class of GH distributions introduced by Barndorff-Nielsen (1977) and extensively discussed by Prause (1999). The GH distribution is a Normal variance-mean mixture and possesses a number of attractive properties: (i) it is closed under conditioning, marginalization, and affine transformations; (ii) the GH

4In fact, the GT-family nests a number of well-known distributions including Normal, Student-t, Laplace and GED distributions. The class of scale mixtures of Normal distributions used by Abanto-Valle et al. (2010) include Normal, Student-t, Slash and Variance Gamma distributions. The Weibull and the Generalized Gamma distributions are particular cases of the EGI family used by Silva et al. (2006).

5A recent reference for Peruvian Stock and Forex return volatilities is Alanya and Rodríguez (2014) using a standard stochastic volatility model with Normal disturbances.
distribution can be both symmetric and skewed, and its tails are generally semiheavy; and (iii) the GH distribution embraces many special cases including Normal, Hyperbolic, Normal Inverse Gaussian (NIG), Variance-Gamma, Student-t and skew Student’s t-distributions; see Aas and Haff (2006) and Nakajima and Omori (2012). However, estimation and identification of its parameters is generally difficult due to the flatness of the likelihood function, and consequently, some parameters are hard to separate, and the likelihood function may have several local maxima; see Prause (1999), Aas and Haff (2006), and Deschamps (2012). Nevertheless, Aas and Haff (2006) noted that the GH Skew Student’s t-distribution is analytically tractable and may considerably alleviate the identification problem mentioned above. Another advantage is that the GH Skew Student’s t-distribution exhibits unequal thickness in both tails, unlike the other skewed extensions of the Student-t distribution. This distribution has the property of one tail exhibiting polynomial and the other exponential behavior, and this offers more flexibility.

One of the main difficulties of the SV framework is the parameter estimation, because no explicit expression for the likelihood function of the SV model is directly available given that the variance is an unobserved component. It is possible to compute the likelihood function but this requires the use of simulation techniques, such as simulated maximum likelihood, method of simulated moments, or Markov Chain Monte Carlo (MCMC) techniques. For an overview of the estimation methods of SV models, see Shephard (1996, 2005); Ghysels et al. (1996); Broto and Ruiz (2004). Simulation techniques require a computational burden since we need to repeat the filtering procedure many times in order to evaluate the likelihood function for each set of parameters until it reaches the maximum (Nakajima, 2012). Computer-intensive methods are thus needed even for the simplest version of the model. In addition, Nakajima and Omori (2012) noted that the GH Skew Student’s t-distribution is difficult to implement in the SV context due to the large numbers of latent volatility variables. To overcome this difficulty, Nakajima and Omori (2012) have proposed a Bayesian estimation method using the MCMC algorithm for a precise and efficient estimation of the SV model, including both leverage effects and skewed heavy-tailed disturbances using the GH Skew Student’s t-distribution. The key point in implementing an efficient MCMC algorithm in the SSVKt model is to express the GH Skew Student’s t-distribution of the disturbance as a Normal variance-mean mixture of the Generalized Inverse Gaussian (GIG), specifically, the Inverse Gamma (IG) distribution as a mixing distribution among the class of GIG distributions to nest and extend various existing SV models.

In this paper, we estimate a SV model incorporating both leverage effects and skewed heavy-tailed disturbances by taking into account the GH Skew Student’s t-distribution (SVSKt) and using the Bayesian estimation method proposed by Nakajima and Omori (2012). We apply the SVSKt model to the daily returns of five Latin American stock market returns: IGBVL (Peru), Merval (Argentina), MEXBOL (Mexico), IPSA (Chile) and IBOVESPA (Brazil), and we also analyze the U.S. S&P500 returns to compare the results. The SVSKt model can be considered a flexible model to fit the returns and volatility characteristics, because it is able to model substantially skewed and heavy-tailed data and includes the SV model with Normal disturbances (SV-Normal) and the SV

6 Several articles have studied different skew t-type distributions where distributions have two tails behaving as polynomials. This fact means that they fit heavy-tailed data well, but they do not handle substantial skewness. By substantial skewness, Aas and Haff (2006) mean cases with one heavy tail and one nonheavy tail. Their definition relates to the relative fatness of the two tails of the density rather than a threshold for the skewness coefficient.

7 Despite the computational costs that these techniques involving, increasing computer power and the further development of efficient sampling techniques weaken this drawback noticeably.
model with symmetric Student’s t-disturbances (SVt).

The posterior mean parameter estimates are consistent with the literature that indicates high persistence of the volatility in stock returns, except for the IGBVL returns. The results also support the evidence that there are leverage effects in all returns considered, but there is not enough evidence for the IGBVL. The estimates show that the leverage effect is more notable in MEXBOL and IBOVESPA, followed by Merval and IPSA. Another important result is that the log-volatility of IGBVL returns have more variability than the other stock returns in Latin America. Also, the results support the evidence of skewed heavy-tailed disturbances only for the Merval, symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric Normal disturbances for the IGBVL. The volatility estimates for daily stock returns show a similar pattern between them for the sample period considered, including similar clustering periods. On the other hand, the comparison between SVSKt and SVt models show that the former outperforms the latter for IGBVL, Merval and IBOVESPA, while the reverse is true for MEXBOL and IPSA.

The paper is organized as follows. In Section 2, we describe a basic SV Normal model and introduce the GH Skew Student’s t-distribution in the SV context (SVSKt model). In addition, we describe the Bayesian estimation method using the MCMC algorithm proposed by Nakajima and Omori (2012). Section 3 presents empirical results based on five Latin American stock market returns: Peru, Argentina, Mexico, Chile and Brazil, where the SVSKt model is applied to daily return data using the estimation method proposed by Nakajima and Omori (2012) and the competing SVt models are compared. In order to compare results, the SVSKt is also applied to US S&P500 daily return data. A prior sensitivity analysis is also provided in this section. Conclusions are presented in Section 4. In the Appendix, we present the properties of the GH Skew Student’s t-distribution and the MCMC sampling procedure in detail, as well as the Multi-move sampler for the SVSKt model used by Nakajima and Omori (2012).

2 Bayesian Inference for the SV Model with Leverage and Skewed Heavy-Tailed Disturbances using the GH Skew Student’s t-Distribution

2.1 A Basic SV Model

The SV model assumes that the volatility of stock returns has been generated under a latent stochastic process. The basic discrete-time SV model with Normal disturbances can be written as

\[
\begin{align*}
y_t &= \exp(h_t/2)\epsilon_t, & t = 1, \ldots, n, \\
h_{t+1} &= \mu + \phi(h_t - \mu) + \eta_t, & t = 0, \ldots, n - 1, \\
\epsilon_t &\sim N(0, 1), \\
\eta_t &\sim N(0, \sigma^2),
\end{align*}
\]

where \(y_t\) is the asset return and \(h_t\) is the unobserved logarithm of the volatility. The volatility process is commonly assumed to follow a stationary AR(1) process by imposing that the persistence parameter satisfy the condition \(|\phi| < 1\); this implies that the log-volatility process is stationary and the initial value, \(h_1\), is assumed to follow a stationary distribution by setting \(h_0 = \mu\) and \(\eta_0 \sim N(0, \sigma^2/(1 - \phi^2))\). Finally, \(\epsilon_t\) and \(\eta_t\) are uncorrelated Normal distributed disturbances.

There are characteristics of the return distribution for financial variables that the basic SV model with Normal disturbances does not capture, such as excess of kurtosis and heavy-tailedness,
skewness and the leverage effects. The excess of kurtosis and skewness of the asset return distribution justifies the introduction of skewed heavy-tailed disturbances such as the GH Skew Student’s t-distribution. On the side of the leverage effects, the basic SV model does not allow the volatility to react with positive or negative movements in returns. These leverage effects can be incorporated into the SV model by assuming that there is some association between the return shocks (ϵ_t) and volatility shocks (η_t).

2.2 An SV Model with Leverage and Skewed Heavy-Tailed Disturbances

According to Nakajima and Omori (2012), the SV model with leverage effects can be written as:

$$y_t = \exp(h_t/2)\epsilon_t, \quad t = 1, \ldots, n, \quad (5)$$

$$h_{t+1} = \mu + \phi(h_t - \mu) + \eta_t, \quad t = 0, \ldots, n - 1, \quad (6)$$

$$(\eta_t^\prime) \sim N(0, \Sigma), \quad \text{with} \quad \Sigma = \begin{bmatrix} 1 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix}. \quad (7)$$

This model is similar to the previous basic SV model, but now we allow ϵ_t and η_t to be correlated disturbances, where the parameter ρ measures the correlation between them. We have volatility asymmetry if $\rho \neq 0$ and, specifically, when $\rho < 0$, this indicates a leverage effect: a negative return today will increase volatility tomorrow, and when $\rho = 0$, effects of this type do not occur; see Yu (2005).

Regarding the SV model incorporating both leverage effects and skewed heavy-tailed disturbances using the GH Skew Student’s t-distribution, skewed heavy tails in the return distribution are incorporated into the SV model by replacing the Normal disturbance ϵ_t in (5) with a disturbance from a GH Skew Student’s t-distribution, denoted by ω_t. This GH Skew Student’s t-distribution is a limiting case of the more general class of the GH distribution. Following Prause (1999) and Aas and Haff (2006), the probability density function of a GH random variable ω_t^* is given by:

$$f_{GH}(\omega^*; \lambda, \delta, \alpha, \mu_\omega, \beta) = \frac{(\alpha^2 - \beta^2)^{\lambda/2}K_{\lambda-1/2}\left(\alpha\sqrt{\delta^2 + (\omega^* - \mu_\omega)^2}\right) \exp\left(\beta(\omega^* - \mu_\omega)\right)}{\sqrt{2\pi\alpha^{\lambda-1/2}\delta^\lambda}K_{\lambda}\left(\delta\sqrt{\alpha^2 - \beta^2}\right)\left(\sqrt{\delta^2 + (x - \mu_\omega)^2}\right)^{1/2-\lambda}}, \quad (8)$$

where K_j is the modified Bessel function of the third kind of order j and the parameters must fulfill certain conditions; for more details see Appendix A. The GH distribution may be represented as a Normal variance-mean mixture with the Generalized Inverse Gaussian (GIG) distribution as a mixing distribution. This means that the GH variable ω_t^* can be represented as:

$$\omega_t^* = \mu_\omega + \beta z_t^* + \sqrt{z_t^*} \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad z_t^* \sim GIG(\lambda, \delta, \gamma), \quad (9)$$

with ϵ_t and z_t independent and $\gamma = \sqrt{\alpha^2 - \beta^2}$. The GH Skew Student’s t-distribution is the special case where $\lambda = -\nu/2$ ($\nu > 0$) and $\alpha = |\beta|$ (the latter implies $\gamma = 0$) in equation (8). The probability density function of a GH Skew Student’s t- random variable ω_t is given by:
\[
f_{\text{GHskewt}}(\omega; \nu, \delta, \mu_\omega, \beta) = \frac{2^{1+\frac{1}{2}} \delta^{\nu} |\beta|^{\frac{\nu+1}{2}} K_{\frac{\nu+1}{2}} \left(\sqrt{\beta^2 (\delta^2 + (\omega - \mu_\omega)^2)} \right) \exp(\beta (\omega - \mu_\omega))}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi} \left(\sqrt{\delta^2 + (\omega - \mu_\omega)^2} \right)^{\frac{\nu+1}{2}}} , \beta \neq 0, \tag{10}
\]

and
\[
f_{\text{GHskewt}}(\omega; \nu, \delta, \mu_\omega) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi} \delta \Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{(\omega - \mu_\omega)^2}{\delta^2} \right]^{-\frac{(\nu+1)/2}{2}}, \beta = 0. \tag{11}
\]

where \(\Gamma(\cdot)\) is the Gamma function. The density given in (11) is known as the noncentral Student’s t-distribution with \(\nu\) degrees of freedom.

As observed in the literature, estimation and identification of the GH distribution parameters is generally difficult; see Prause (1999), Aas and Haff (2006), and Deschamps (2012). It is an issue even for a GH Skew Student’s t-distribution with \(\lambda = -\nu/2 \ (\nu > 0)\) and \(\gamma = 0\); see Nakajima and Omori (2012). In order to overcome these difficulties, Nakajima and Omori (2012) make the additional assumption that \(\delta = \sqrt{\nu}\), and show that their proposed parameterization is appropriate for the SV model with the GH Skew Student’s t-distribution because it allows a parsimonious representation that is more amenable to estimation and leads to efficient MCMC sampling. This additional assumption yields \(z_t^* = z_t \sim \text{GIG}(-\nu/2, \sqrt{\nu}, 0)\), or, equivalently, \(\text{IG}(\nu/2, \nu/2)\) where \(\text{IG}\) denotes the Inverse Gamma distribution. Therefore, the GH Skew Student’s t-disturbance, \(\omega_t\), can be expressed in the form of the Normal variance-mean mixture as:

\[
\omega_t = \mu_\omega + \beta z_t + \sqrt{z_t} \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad z_t \sim \text{IG}(\nu/2, \nu/2), \tag{12}
\]

where \(\mu_\omega\) and \(\beta\) are the location and skew parameters, respectively, and the IG distribution is the mixing distribution among the class of GIG distributions. Nakajima and Omori (2012) argue that the structure of (12) lends itself well to the construction of a MCMC algorithm in the Bayesian inference context. To allow \(E(\omega_t) = 0\), it is assumed that \(\mu_\omega = -\beta \mu_z\), where \(\mu_z \equiv E(z_t) = \nu/(\nu-2)\). The variance of \(\omega_t\) is only finite when \(\nu > 4\), as opposed to the symmetric Student’s t-distribution which only requires \(\nu > 2\). For this reason an additional constraint is imposed, \(\nu > 4\), in order to ensure existence of the second moment of \(\omega_t\).

Regarding the tails of the GH Skew Student’s t-distribution, this distribution has the property of exhibiting unequal thickness in both tails, where one tail has polynomial and the other exponential behavior. It is the only subclass of the GH family of distributions to have this property. Thus, the GH Skew Student’s t-distribution has one heavy and one semiheavy tail. This makes it unique for modeling substantially skewed and heavy-tailed data as found in financial markets (Aas and Haff, 2006; Trojan, 2013). The tails of the GH Skew Student’s t-distribution are characterized solely by the parameters \(\beta\) and \(\nu\), which jointly determine the degree of skewness and heavy tailedness. A lower value of \(\beta\) (when \(\nu\) fixed) implies a more negative skewness as well as heavier tails. On the other hand, as \(\nu\) becomes larger (when \(\beta\) fixed) the density becomes less skewed and has lighter tails. Figure 1 shows densities of the GH Skew Student’s t-distribution using several combinations of the parameter values of \(\beta\) and \(\nu\), and demonstrates how both parameters jointly determine the skewness and the kurtosis of the distribution.
Taking into account the above issues, the SV model incorporating both leverage effects and skewed heavy-tailed disturbances by using the GH Skew Student’s t-distribution (the SVSKt model) can be written as:

$$
y_t = \exp(h_t/2)\{\beta(z_t - \mu_z) + \sqrt{\nu} \epsilon_t\}, \quad t = 1, \ldots, n, \quad (13)
$$

$$
h_{t+1} = \mu + \phi(h_t - \mu) + \eta_t, \quad t = 0, \ldots, n - 1, \quad (14)
$$

$$
z_t \sim IG(\nu/2, \nu/2), \quad (15)
$$

$$
\left(\frac{\ell_t}{h_t} \right) \sim N(0, \Sigma), \quad \text{with} \quad \Sigma = \begin{bmatrix} 1 & \rho \sigma \\
\rho \sigma & \sigma^2 \end{bmatrix}. \quad (16)
$$

The degree of freedom $\nu > 4$ is an unknown parameter to be estimated. The SVSKt model includes the SV model with Normal disturbances (SV-Normal) when $\beta = 0$ and $z_t \equiv 1$ for all t and to the symmetric Student’s t-disturbances (SVt) when $\beta = 0$.

2.3 Bayesian Estimation of the SVSKt Model

We use the Bayesian estimation method proposed by Nakajima and Omori (2012) using the MCMC algorithm for the SVSKt model. In this subsection, we present some preliminary issues regarding the estimation of the SV models within the Bayesian context and a brief discussion about the steps of the MCMC algorithm of Nakajima and Omori (2012).

Estimation of SV models consists of two stages: estimation of the model’s set of parameters, and estimation of the unobserved volatility time series. Techniques based on MCMC algorithms offer a framework both for estimating the parameters of the SV models and for assessing the latent volatilities. These methods have had a widespread influence on the theory and practice of Bayesian inference that are based on the posterior distributions of parameters given the observed data using the Bayes’ Theorem, where $\pi(\theta | y) \propto f(y | \theta)\pi(\theta)$ is the the posterior distribution of parameters conditional on the data y; θ is the vector that contains all parameters of the model; $f(y | \theta)$ is the likelihood function; and $\pi(\theta)$ are the priors, which are beliefs about the distributions of the parameters. The idea behind the MCMC algorithms is to produce random variables from a given multivariate density (the posterior density in Bayesian applications) by repeatedly sampling a Markov chain whose invariant distribution is the target density of interest; see Kim et al. (1998). There are typically many different ways of constructing a Markov chain with this property; but a key point is to isolate those that are simulation-efficient in the context of SV models; therefore the design of the MCMC algorithm is important for the speed of convergence of the chains.

In the SV context, the likelihood function to be maximized is given by $f(y | \theta) = \int f(y | h, \theta)f(h | \theta)dh$. Jacquier et al. (1994) argue that the likelihood function has no analytical representation and is intractable. This fact precludes the direct analysis of the posterior density $\pi(\theta | y)$ by MCMC methods. This problem can be overcome by focusing instead on the density $\pi(\theta, h | y)$, where $h = (h_1, \ldots, h_n)$ is the vector of n latent log-volatilities; see Kim et al. (1998). The MCMC procedures can be developed to sample this density without computation of the likelihood function $f(y | \theta)$. These draws can be used to make inferences by appealing to suitable ergodic Theorems for Markov chains. For example, posterior moments and marginal densities can be estimated by averaging the relevant functions of interest over the sampled random variables. For instance, the posterior mean of θ is estimated by the sample mean of the simulated θ values.
Several approaches to MCMC algorithms have been suggested for the estimation of the SV model within the Bayesian context. Jacquier et al. (1994) use a single-move Gibbs sampling within the Metropolis–Hastings algorithm to sample from the log-volatilities $h = (h_1, \ldots, h_n)$. This algorithm consists of generating a sample of one state, h_t, at a time given others, h_k ($k \neq t$). Some researchers have argued that when parameters are correlated, the single-move procedure results in a slower speed of convergence of the Markov chain. Kim et al. (1999) developed the mixture sampler that approximates the distribution of log-squared returns by mixture of Normal distributions, allowing joint drawing on the components of the whole vector of log-volatilities. Another approach, developed by Shephard and Pitt (1997) and Watanabe and Omori (2004) in the context of state-space modeling, uses the multi-move sampler for generating the log-volatility in the SV model by updating several variables at a time. This algorithm can produce efficient samples from the target conditional posterior distribution by dividing the process of $h = (h_1, \ldots, h_n)$ into several blocks and generates a sample of each block given other blocks. Regarding the SV model with leverage, Omori and Watanabe (2008) developed the associated multi-move sampler and showed that it produces efficient samples. The mixture sampler and multi-move sampler are more efficient than the single-move sampler; see Nakajima (2012).

The Bayesian estimation method proposed by Nakajima and Omori (2012) for the SVSkT model extends the method developed by Omori and Watanabe (2008) for sampling h using the multi-move sampler. They noted that the key point to implement an efficient MCMC algorithm in the SVSkT model is to express the GH Skew Student’s t-distribution of the disturbance as a Normal variance-mean mixture of the GIG, as stated in (12); specifically, the IG distribution as a mixing distribution among the class of GIG distributions. They consider the variable z_t, following the mixing distribution, as a latent variable. The conditional posterior distribution of each parameter is reduced to a much more tractable form conditional on z_t than when the model is considered in the direct likelihood form of the GH Skew Student’s t-distribution. This treatment allows samples to be drawn from the conditional posterior distribution of z_t for $t = 1, \ldots, n$. Nakajima and Omori (2012) use the following sampling algorithm for the SVSkT model using the MCMC method. Let $\theta = (\phi, \sigma, \rho, \mu, \beta, \nu)$, $\{y_t\}_{t=1}^n$, $\{h_t\}_{t=1}^n$, $\{z_t\}_{t=1}^n$ and $\pi(\phi)$, $\pi(\theta)$ and $\pi(\nu)$ are the prior probability densities of ϕ, $\theta \equiv (\sigma, \rho, \nu)$ and ν, respectively. Random samples are drawn from the posterior distribution of (θ, h, z) given y. The sampling steps are given by: (i) initialize θ, h and z; (ii) generate $\phi|\sigma, \rho, \mu, \beta, \nu, h, z, y$; (iii) generate $(\sigma, \rho)|\phi, \mu, \beta, \nu, h, z, y$; (iv) generate $\mu|\phi, \sigma, \rho, \beta, \nu, h, z, y$; (v) generate $\beta|\phi, \sigma, \rho, \mu, \nu, h, z, y$; (vi) generate $\nu|\phi, \sigma, \rho, \mu, \beta, h, z, y$; (vii) generate $z|\theta, h, y$; (viii) generate $h|\theta, z, y$; (ix) go to 2. The full algorithm describing more details of each sampling step can be found in Appendix B, and the details of the multi-move sampler are described in the Appendix C.

3 Empirical Application to Stock Returns Data

3.1 The Data

For Bayesian estimation of the SVSkT model, we consider the daily returns of five Latin American stock market returns: IGBVL (Peru), Argentina (MERVAL), Mexico (MEXBOL), Brazil

8 Nakajima and Omori (2012) noted that when $\rho = 0$, the closed form of the density $f(y_t | h_t)$, which is marginalized over z_t, is available. However, in the case of $\rho \neq 0$, the closed form of the density $f(y_t | h_t, h_{t+1})$ is not available. Therefore, the latent variable z_t plays an important role in exploring the posterior distributions using the MCMC algorithm.
(IBOVESPÁ), and Chile (IPSA). The Latin American stock market returns cover the sample period from 2/1/1996 to 30/12/2013, except for Peru where the period is from 2/1/2001 to 30/12/2013 due to a change in the methodology of the IGBVL index in November 1998, which could affect the results. In our application, we also analyze the U.S. S&P500 index from 2/1/1996 to 20/12/2013 to compare the results of literature with Latin American stock market returns. One reason is that the U.S. stock market could be considered as a good benchmark.

Daily stock returns are computed as the log difference \(y_t = \log P_t - \log P_{t-1} \), where \(P_t \) is the closing stock price of day \(t \). The data was obtained from Bloomberg and the sample size differs between countries due to holidays and stock market non-trading days. Table 1 shows the number of observations and some descriptive statistics, and Figure 2 shows the time series plots of the daily stock returns. Skewness statistics are sometimes used to assess the symmetry of distributions while kurtosis statistics are often interpreted as a measure of similarity to a Normal distribution. These statistics are sensitive to extreme observations. The IGBVL and the MERVAL series are negatively skewed while the MEXBOL, the IBOVESPA and the IPSA series of returns are positively skewed. However, the skewness of the MEXBOL is very close to zero. The IGBVL index is the most negatively skewed with \(-0.528\) and the IBOVESPA index is the most positively skewed with \(0.299\). As regards the kurtosis, all the daily returns of Latin American returns considered have positive kurtosis and IBOVESPA has the highest value 13.143. All five sets of returns of Latin American returns are leptokurtic, since all the estimates of kurtosis in Table 1 exceed 3, which is the kurtosis value for Normal distribution. In the case of the S&P500 daily returns, this index also has negative skewness and positive kurtosis. The summary statistics show that daily stock returns of the five countries appear to be distributed with fat-tails for the distribution of the empirical returns data and negative skewness for IGBVL and MERVAL. It is clear that the returns-generating process is not even approximately Gaussian.

3.2 Parameter Estimates

For parameter estimates of the SVSKt model, we use the same prior distributions as Nakajima and Omori (2012). The following prior distributions are assumed and commonly used in the literature; see for example, Kim et al. (1998), Meyer and Yu (2000), Yu (2005), Omori et al. (2007), Nakajima and Omori (2009), Nakajima (2012), Trojan (2013):

1. Let \(\phi = 2\phi^* - 1 \) and we specify a Beta(\(\alpha, \beta \)) prior distribution for \(\phi^* \) with \(\alpha = 20 \) and \(\beta = 1.5 \) which implies that the prior mean and prior standard deviation of \(\phi \) are \((0.8605, 0.1074)\). Our prior on \(\phi \) has the support on the interval \((-1, 1)\) and mirrors a belief in moderate volatility persistence with mean 0.86.

2. We assume a conjugate Inverse-Gamma prior for \(\sigma^2 \), that is, \(\sigma^2 \sim IG(\alpha, \beta) \) with shape parameter \(\alpha = 2.5 \) and scale parameter \(\beta = 0.025 \), which implies that the prior mean and prior standard deviation of \(\sigma^2 \) are \((0.0167, 0.0236)\).

3. We employ a Normal prior distribution for \(\mu \), that is, \(\mu \sim N(-10, 1) \)\(^{10} \) and a \(U(-1, 1) \) prior distribution for \(\rho \).

\(^9\)Although we deal with volatility of stock returns, it is important to mention that the periods considered in the estimates for all countries are periods of stable inflation. We do not consider periods of high inflation as comparisons between different indices would be inadequate.

\(^{10}\)Kim et al. (1998) and Meyer and Yu (2000) employ a slightly informative prior for \(\mu : \mu \sim N(0, 10) \).
4. We specify a standard Normal prior distribution for β, that is, $\beta \sim N(0, 1)$ and a $\text{Gamma}(\alpha, \beta)$ prior distribution for ν with shape parameter $\alpha = 16$ and rate parameter $\beta = 0.8$. We assume an additional constraint $\nu > 4$ in the prior distribution of ν to ensure existence of the second moment of ω_t, that is, $E(\omega_t^2) < \infty$. Thus, the prior distribution of ν is $\nu \sim \text{Gamma}(16, 0.8)1(\nu > 4)$ which implies that the prior mean and prior standard deviation of ν are $(20, 5)$ and where $1(.)$ is the indicator function.

The MCMC simulation is conducted with 20000 samples after discarding the initial 5 000 samples as a burn-in period for MERVAL, MEXBOL, IBOVESPA, IPSA and S&P500 and 9000 samples as a burn-in period for IGBVL, so that the effect of initial values on the posterior inference is minimized. Using the 20000 samples for each of the parameters, the posterior means, the standard deviations, the 95% intervals, and the inefficiency factor are obtained. The posterior means are computed by averaging the simulated samples. The 95% intervals are calculated using the 2.5th and 97.5th percentiles of the simulated samples. The MCMC sampler is initialized by setting $\phi = 0.97$, $\sigma = 0.2$, $\rho = -0.3$, $\mu = -10$, $\beta = -0.3$ and $\nu = 15$ for MERVAL, MEXBOL, IBOVESPA, IPSA and S&P500 and $\phi = 0.85$, $\sigma = 0.8$, $\rho = -0.05$, $\mu = -9$, $\beta = -0.015$ and $\nu = 30$ for IGBVL.

We compute the inefficiency factor to check the efficiency of the MCMC algorithm. The inefficiency factor is defined by $1 + 2\sum_{s=1}^\infty \rho_s$, where ρ_s is the sample autocorrelation at lag s. It measures how well the MCMC chain mixes; see Chib (2001), and Nakajima and Omori (2009, 2012). It is also the estimated ratio of the numerical variance of the posterior sample mean to the variance of the hypothetical sample mean from uncorrelated draws. The inefficiency factor serves to quantify the relative efficiency from correlated versus independent samples. When the inefficiency factor is equal to m, we need to draw MCMC samples m times as many as uncorrelated samples. We compute the inefficiency factor using a Parzen window with bandwidth $b_w = 1000$.

Figures 3-8 show the MCMC estimation results of the SVSkt model for the IGBVL, MERVAL, MEXBOL, IBOVESPA, IPSA and S&P500 returns, respectively. Regarding the Latin American stock returns, the sample paths appear to be stable and the proposed estimation scheme works well for MERVAL, MEXBOL, IBOVESPA and IPSA. In these cases, the autocorrelation over the iterations is decaying and there is convergence of the Markov chains of the parameters. As regards the IGBVL, we obtain poor mixing (or slow convergence) of the Markov chain for some parameters (ϕ, σ and μ) and estimation results show high autocorrelation through iterations of ϕ, σ and μ with a slow decay. With respect to S&P500, we obtain similar results to Nakajima and Omori (2012).

Table 2 shows the estimation results of the posterior estimates: the posterior means, the standard deviation, the 95% credible intervals, and the inefficiency factors for the stock daily returns data. The posterior means of ϕ, which measures persistence of the log-volatility, are close to one (in the range of 0.953 to 0.971) for MERVAL, MEXBOL, IBOVESPA and IPSA. The IBOVESPA and MEXBOL are more persistent, followed by IPSA and MERVAL. In fact, for the two former volatilities, the half-lives of the shocks have a duration of 23.6 and 21.5 days, respectively. In the cases of the IPSA and MERVAL, the durations are 19.6 and 14.6 days, respectively. For the S&P 500 the half-life duration of a shock is around 23 days, which is very close to the results of IBOVESPA and MERVAL. On the opposite side, the IGBVL daily returns data has a posterior mean of $\phi = 0.861$, which indicates a low persistence in comparison to the volatility of the other returns above-mentioned. In this case, the half-life duration of a shock is only 4.7 days, which is very low. These results are interesting because they contrast with the result of Alanya and Rodriguez (2014), where the half-life shock is 15.8 days using a SV model with Normal disturbances.
The posterior means of ρ, which measure the correlations between ϵ_t and η_t, are estimated to be negative for all returns considered. When ρ values are negative, it implies that there are leverage effects. The MEXBOL and the IBOVESPA have the highest negative posterior mean estimates of ρ (-0.394 and -0.346, respectively), which implies that the leverage effect is more notable for these returns. Also, the 95% credible intervals are negative, implying that the posterior probability that ρ is negative is greater than 0.95, and the negativity of ρ is credible. The same applies with MERVAL and IPSA (posterior mean estimates for ρ are -0.2977 and -0.2970, respectively) where the 95% credible intervals are negative, but this is a smaller leverage effect than the previous returns. In the case of the IGBVL, the posterior mean estimate of ρ is also negative though very close to zero and the 95% credible intervals contain zero and positive values. This implies that the posterior distribution of ρ, although mainly located in the negative range, can take positive values or even zero, which would imply the non-existence of the leverage effect in IGBVL returns. Overall, these results support the evidence of leverage effects in Latin American stock returns data. Regarding the results of the S&P 500, the value of the leverage effect is more negative than any other Latin-American stock market returns.

With respect to the parameter σ, the posterior mean estimates of σ show that all returns have similar estimates in the range from 0.196 to 0.271 with the exception of the IGBVL returns, where the posterior mean estimate of σ takes a very high value (0.917) compared to the other returns. This implies that the variance of the shock η_t is large and the log-volatility has more variability than the other stock returns in Latin America. Indeed, comparing with Alanya and Rodríguez (2014), this posterior estimate for Peru is around three times larger than the value obtained in the mentioned reference. This value (jointly with the estimate of ϕ) indicates that the IGBVL is the most volatile stock market index in the region. As to the posterior mean of μ, all returns show similar results in the range of -19.462 to -8.242.

As mentioned previously, the skewness and the heavy-tailedness of the GH Skew Student’s t-Distribution are determined jointly by the combination of the parameter values of β and ν. With ν fixed, a lower value of β implies a more negative skewness or left-skewness as well as heavier tails. On the other hand, with β fixed, as ν becomes larger the density becomes less skewed and has lighter tails. The posterior means of β are estimated to be negative for all index returns data considered. MERVAL has the least value of the posterior mean estimate of β with -0.246, and the 95% credible interval is negative, implying that the posterior probability that β is negative is greater than 0.95, and the negativity of β is credible. However, the posterior mean estimates of β for IGBVL, MEXBOL, IBOVESPA and IPSA are also negative but the 95% credible intervals contain zero and positive values. We know that when $\beta = 0$ in the SVSKt model, it corresponds to a symmetric student’s t-density. The estimates of β are very close to zero for IGBVL, IBOVESPA and IPSA, which could imply the case of symmetric heavy-tailed disturbances. Finally, the posterior means of ν are around 35.689 for IGBVL, 12.213 for MERVAL, 19.888 for MEXBOL, 17.502 for IBOVESPA and 30.252 for IPSA returns.

Figures 9-13 show the density of the GH Skew Student’s t-distribution with the estimates parameters of Table 3 for the returns considered. Four points are worth mentioning: (i) the distributions of the IGBVL, MEXBOL, IBOVESPA and IPSA appear to be symmetrical; (ii) in the cases of symmetric distributions, the MEXBOL and IBOVESPA have heavier tails than the IGBVL and IPSA; (iii) the distribution of the IGBVL is similar to the Normal distribution; and (iv) the distribution of the MERVAL have negative skewness (asymmetric) and has heavier tails than the other returns considered. These results support the evidence of skewed heavy-tailed disturbances
only for the MERVAL, symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric Normal disturbances for the IGBVL.

Regarding the S&P500 daily returns, the results are very similar to Nakajima and Omori (2012). The posterior mean of ϕ is close to one (0.970) and this fact implies high persistence, more than the Latin American stock returns considered. The posterior mean of ρ is estimated to be negative (−0.686, the more negative than any other Latin-American data) which implies evidence of leverage effects for the S&P500. Also, the 95% credible intervals are negative, implying that the posterior probability that ρ is negative is greater than 0.95, and the negativity of ρ is credible. The posterior mean estimate of σ is 0.238, which is a similar parameter estimate to the MERVAL, MEXBOL, IPSA and IBOVESPA returns. The posterior mean of μ is −9.418. The posterior mean of β is estimated to be negative (−0.784). Moreover, the 95% credible intervals are negative, implying that the posterior probability that β is negative is greater than 0.95, and the negativity of β is credible. These results support the evidence of skewness. Finally, the posterior means of ν are around 24.868. Figure 14 shows the density of the GH Skew Student’s t-distribution with the estimated parameters of Table 3 for the US S&P500. The distribution of the S&P500 has more negative skewness (asymmetric) and heavier tails than the Latin American returns considered. The negative skewness and heavy tails are more notable in this case.

The indicator of how well the MCMC chain mixes is measured by the inefficiency factor of the MCMC algorithm defined by $1 + 2\sum_{s=1}^{\infty} \rho_s$, as mentioned before. The inefficiency factor shows high values for parameters ϕ, σ and μ for the IGBVL. These results are supported by the initial MCMC Figure 3 that shows high autocorrelation through iterations of parameters ϕ, σ and μ for the IGBVL that decays slowly. The results for the returns of MERVAL, MEXBOL, IBOVESPA and IPSA show low inefficiency factor values in all parameter estimates, but parameter σ and ν have higher inefficiency factor values compared with the other parameters. In general, the inefficiency factor for the parameters of the S&P500 returns have low values.

Figure 15 shows the log-volatility estimates for the Latin American stock index returns considered. The results show that there is a similar pattern between periods of higher volatility in the five Latin American returns. Most of the time, these periods of high volatility are associated with international crises. For example, all returns had a rise in log-volatility in the period from August to November 1998 due to the Asian crisis, which caused a contagion effect. Also, all stock returns show a considerable increase in the level of log-volatility for the period September - October 2008 associated with the outbreak of the international financial crisis. Another example is in July and September 2011 due to the European crisis.

Similar volatility patterns observed (Figure 15) may be also raised by observing the levels of correlation between these variables. Indeed, the most linked series (correlated) with the volatility of the S&P500 are the IBOVESPA (0.744) and the MEXBOL (0.713). On the opposite side, the volatility that is least connected or linked to the S&P500 is the IGBVL (0.254). The remaining series are at intermediate levels: IPSA (0.573) and Merval (0.539). Within Latin America the following connections can be observed: the volatility of IBOVESPA is most connected with MEXBOL (0.780), MERVAL (0.619) and IPSA (0.617). For IGBVL volatility (Peru), it shows correlations from 0.40 to 0.42 with the IPSA and MEXBOL. However, compared to other volatilities, such as MERVAL, correlation is only 0.091.
3.3 Model Comparison

In this subsection, we compare two competing models for the daily stock returns: the SVSk model and the SVt model (with symmetric Student’s t-disturbances, or equivalently the SVSk model with $\beta = 0$). Both models compared are allowed to include leverage effects. Model comparison in a Bayesian framework can be performed using posterior odds. If $y = \{y_t\}_{t=1}^n$ denotes the returns observation vector, then the posterior odds in favor of model A, M_A, to model B, M_B, is given by $f(M_A|y)/f(M_B|y) = f(y|M_A)/f(y|M_B)$, which is the posterior probability of the model i, $i = A, B$, $f(M_i)$ is the prior probability of the model, and $f(y|M_i)$ is the marginal likelihood. The expressions or ratios $f(M_A)/f(M_B)$ and $f(M_A)/f(M_B)$ are called Bayes factor and prior odds, respectively. As is the usual practice, the prior odds are assumed to be 1; that is, the prior probabilities are assumed to be equal between competing models, so that the posterior odds ratio is equal to the Bayes factor; see Asai (2009). The idea is to compare the competing models using their posterior probabilities to select the one that is the best supported by the data. We choose the model that yields the largest posterior probability, or, equivalently, the largest marginal likelihood. Thus, we choose model A if the posterior odds or Bayes factor is greater than 1, and we choose model B if it is less than 1.

The marginal likelihood is defined by $f(y|M_i) = \int f(y|M_i, \theta_i)f(\theta_i|M_i) d\theta_i$; this is, the integral of the likelihood with respect to the prior density of the parameter. To compute the logarithm of the marginal likelihood, we follow the log marginal likelihood identity of model M_i which is developed in Chib (1995) and can be written as: $\log f(y|M_i) = \log f(y|M_i, \theta_i) + \log f(\theta_i|M_i) - \log f(\theta_i|M_i, y)$, $i = A, B$, where θ_i is the set of unknown parameters for model M_i; $f(y|M_i, \theta_i)$ is the likelihood of the model, $f(\theta_i|M_i)$ is the prior probability density, and $f(\theta_i|M_i, y)$ is the posterior probability density. The identity (3.3) holds for any value of θ_i, but following Chib (1995), Kim et al. (1998), Asai (2009), Nakajima (2012) and Nakajima and Omori (2012), we set θ_i at its posterior mean calculated using the MCMC samples to obtain a stable estimate of $f(y|M_i)$. The prior probability density can be calculated easily, although the likelihood and posterior part must be evaluated by simulation; see Nakajima and Omori (2012). The likelihood $f(y|M_i, \theta_i)$ can be estimated using the particle filter; see for example, Pitt and Shephard (1999), Chib et al. (2002) and Omori et al. (2007). The posterior probability density $f(\theta_i|M_i, y)$ can be estimated using the method developed by Chib (1995) and Chib and Jeliazkov (2001) with samples obtained through additional but reduced iterations of the MCMC algorithm.

First, we estimate the SVt model. Figures 16 – 20 show the MCMC estimation results of the SVt model for IGBVL, MERVAL, MEXBOL, IBOVESPA and IPSA stock returns data. The Table 3 shows the MCMC estimation results of the posterior estimates of the SVt model: the posterior means, the standard deviation, the 95% credible intervals and the inefficiency factors for the IGBVL, MERVAL, MEXBOL, IPSA and IBOVESPA stock returns data. The posterior means of estimates parameter are very similar to the SVSk model. For example, comparing the half-lives given the posterior mean of ϕ, the results are almost equal between both models. The only difference is in the IBOVESPA where the half-life goes from 23.5 to 15.5 days. The other small difference is in the MEXBOL where half-life shock goes from 21.5 to 22.3 days. Other results are very similar, including the parameter ρ in the case of the IGBVL.

In order to compare the competing models, we estimate the log marginal likelihoods, $\log f(y|M_i)$, as follows: (i) the likelihood is estimated using the auxiliary particle filter with 10 000 particles. It is replicated 10 times to obtain the standard error of the likelihood estimate as in Nakajima.
and Omori (2012), and (ii) the posterior probability density \((\theta_i|M_i,y)\) is evaluated through 5 000 additional MCMC runs. Table 4 shows the estimates of the log marginal likelihoods and their standard errors. We choose the model that yields the largest log marginal likelihood. The SVSKt model outperforms the SVt model for IGBVL, MERVAL and IBOVESPA stock returns data and the SVt model outperforms the SVSKt model for MEXBOL and IPSA stock returns data. However, the following issues are noted: (i) the value of the Log-ML for both models and the five countries are extremely similar. The larger difference is given by the case of the IGBVL; (ii) the posterior estimates for both models are very similar. That is, parameters are not important in one model, and the same thing happens using the other model; (iii) the larger difference of the Log-ML is for the IGBVL. This is explained by the new posterior value for \(\sigma\) which is now larger compared to Table 3. The estimates still indicate high volatility but low persistence of the volatility for these stock market returns. The very close results of the Log-ML obtained for the other stock markets could suggest that the SVt model is sufficient to model their behavior.

3.4 Prior Sensitivity Analysis

In spite of the computational expense of its implementation, prior sensitivity analysis is an important tool in Bayesian inference because it is important to assess the influence of prior distribution on the final inference. In order to check prior sensitivity, the posterior distribution of the parameters must be studied using a variety of prior distributions. As in Nakajima and Omori (2012), we focus on the skewness and heavy-tailedness parameters, \(\beta\) and \(\nu\), to check the robustness of the results. We focus only on these parameters because we have assumed the values commonly used in the previous literature for the prior distributions of \(\phi, \sigma, \rho\) and \(\mu\). The prior sensitivity analysis takes into account the following priors: (i) Prior \#1: \(\beta \sim N(0,1), \nu \sim \text{Gamma}(16,0.8)1(\nu > 4)\); (ii) Prior \#2: \(\beta \sim N(0,4), \nu \sim \text{Gamma}(16,0.8)1(\nu > 4)\); (iii) Prior \#3: \(\beta \sim N(0,1), \nu \sim \text{Gamma}(24,0.6)1(\nu > 4)\); (iv) Prior \#4: \(\beta \sim N(0,4), \nu \sim \text{Gamma}(24,0.6)1(\nu > 4)\); and Prior \#5: \(\beta \sim N(0,1), \nu \sim \text{Gamma}(1.2,0.03)1(\nu > 4)\); where the prior mean and prior standard deviation for \(\text{Gamma}(16,0.8), \text{Gamma}(24,0.6)\) and \(\text{Gamma}(1.2,0.03)\) are \((20,5), (40,8)\) and \((40,36.5)\), respectively. The prior \#1 denotes the prior distribution assumed in the previous estimations. The prior \#5 for \(\nu\) is rather flat compared to priors \#1 to \#4 and gives less information on \(\nu\). Table 5 shows the parameter estimates: posterior means, the standard deviation, the 95% credible intervals, and the inefficiency factors for \(\beta\) and \(\nu\).

As regards the IGBVL, we provide a prior sensitivity analysis focusing only in the priors \#1, \#2 and \#5 because there are problems with the convergence of the chains with priors \#3 and \#4. The estimates for \(\beta\) are not affected by changing the priors considered. However, the estimates of \(\nu\) (estimates are similar using prior \#1 and \#2) are affected by altering the prior for \(\nu\) from prior \#1 or prior \#2 to prior \#5. The estimates of \(\nu\) get larger (from 36 to 161), implying lighter tails but similar skewness. The estimates of standard deviations for \(\beta\) and \(\nu\) using the prior \#5 are larger than the estimates using the prior \#1 and \#2.

The estimates \((\beta,\nu)\) for the MERVAL are not affected by changing the prior for \(\beta\) from prior \#1 to prior \#2, nor from prior \#3 to prior \#4. However, the estimates of \((\beta,\nu)\) are affected by altering the prior for \(\nu\) from prior \#1 to prior \#3 (or from prior \#2 to prior \#4). The estimates of \(\beta\) get smaller (from \(-0.25\) to \(-0.42\)) and the posterior means of \(\nu\) get larger (from 12 to 20), implying greater skewness and lighter tails. The posterior standard deviations become larger, reflecting the increase in the dispersion of the prior distribution for \(\nu\). When less information on \(\nu\) is given by
prior #5, the estimates of \((\beta, \nu)\) are similar to the estimates obtained by using priors #1 and #2. The estimates of \(\beta\) for the MEXBOL are not affected by changing the priors considered. The estimates of \(\beta\) are similar using the priors #1 to #5 (in the range from \(-0.1076\) to \(-0.0753\)). However, the estimates of \(\nu\) (estimates are similar using prior #1, #2 and #5) are affected by altering the prior for \(\nu\) from prior #1 to prior #3 (or prior #2 to prior #4). The estimates of \(\nu\) get larger (from 19.5 to 27) from prior #1, #2 and #5 to prior #3 and #4, implying lighter tails but similar skewness using the priors #3 to #4. The posterior standard deviations become larger from priors #1 and #2 to priors #3 and #4 and the estimates of standard deviations using prior #5 are the same for \(\beta\) as for priors #1 and #2, but larger for \(\nu\).

In the case of the IBOVESPA, the estimates for \((\beta, \nu)\) are not affected by changing the prior from prior #1 to prior #2 or to prior #5, however from prior #1, #2 or #5 to prior #3 (or from prior #1, #2 or #5 to prior #4) the estimates for \((\beta, \nu)\) are greatly affected. The estimates of \(\beta\) and \(\nu\) get larger from \(-0.03\) to 0.07 and from 17.5 to 29 (average), respectively, implying a disturbance density that becomes less skewed and has lighter tails. The posterior standard deviations of \((\beta, \nu)\) become larger from prior #1, #2 or #5 to prior #3 (or from prior #1, #2 or #5 to prior #4).

Finally, the estimates of \(\beta\) for the IPSA are not greatly affected by changing the priors considered. However, the estimates of \(\nu\) are affected by altering the priors from prior #1 or #2 (the estimates for \(\nu\) are similar with these priors) to prior #3 or #4 (the estimates of \(\nu\) are also similar with these priors) or to prior #5. The posterior means of \(\nu\) are 30.2 using the priors #1 and #2, 50 (average) using the priors #3 and #4, and 106.4 using the prior #5. This fact implies lighter tails but similar skewness. The posterior standard deviations of \((\beta, \nu)\) become larger from prior #1, #2 to prior #3 and #4, and the prior #5 has the largest posterior standard deviation (0.43 for \(\beta\) and 36.96 for \(\nu\)).

Therefore, as in Nakajima and Omori (2012), we also observed that the posterior estimate of \(\nu\) is sensitive to the choice of the prior distribution for \(\nu\) and the posterior estimate of \(\beta\) is also sensitive to the choice of the prior distribution for \(\nu\) because the skewness and heavy-tailedness of the GH skew Student’s \(t\)-distribution are determined by \(\beta\) and \(\nu\) simultaneously and not individually.

4 Conclusions

In this paper, we estimate a SV model incorporating both leverage effects and skewed heavy-tailed disturbances by taking into account the GH Skew Student’s \(t\)-distribution (SVSKt) for a set of Latin American stock market returns using the Bayesian estimation method proposed by Nakajima and Omori (2012). We apply the SVSKt model to the daily returns of five Latin American stock market returns: IGBVL (Peru), MERVAL (Argentina), MEXBOL (Mexico), IPSA (Chile) and IBOVESPA (Brazil), and we also analyze the U.S. S&P500 returns to compare the results. The SVSKt model can be considered a flexible model to fit the returns and volatility characteristics because it is able to model substantially skewed and heavy-tailed data and includes the SV model with Normal disturbances (SV-Normal) and the SV model with symmetric Student’s \(t\)-disturbances (SVt).

The MCMC estimation results of the SVSKt model show that the sample paths of the iterations of parameters are stable, and the proposed estimation scheme works well for all returns except for the IGBVL (the Markov chains do not converge and there is high autocorrelation between iterations). The posterior mean parameter estimates are consistent with literature indicating the high persistence of the volatility in stock returns. However, the results show that the IGBVL
returns have low persistence in comparison to the volatility of the other Latin American stock returns taken into consideration.

The results support the evidence that there are leverage effects in all returns considered but there is not enough evidence for the IGBVL. The estimates show that the leverage effect is more notable in MEXBOL and IBOVESPA, followed by MERVAL and IPSA. In the case of the IGBVL, the posterior mean estimate of ρ is negative but very close to zero, which would imply the non-existence of the leverage effect in the IGBVL returns. Another important result is that the log-volatility of IGBVL returns have more variability than the other stock returns in Latin American. Also, the results support the evidence of skewed heavy-tailed disturbances only for the MERVAL, symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric Normal disturbances for the IGBVL.

Finally, volatility estimates for daily stock returns show a similar pattern across all the sample period considered, including similar clustering periods. On the other hand, the model comparison between SVSKt and SVt model show that the SVSKt model outperforms the SVt model for IGBVL, MERVAL and IBOVESPA; and the SVt model outperforms the SVSKt model for MEXBOL and IPSA.
Appendix A
The GH Skew Student-t-Distribution

This Appendix includes some important properties of the GH skewed Student-t distribution. For a more complete treatment, see Aas and Haff (2006) and Prause (1999). The GH Skew Student-t-Distribution is a limiting case of the GH distribution, which was introduced in Barndorff-Nielsen (1977). The univariate GH distribution can be parameterized in several ways. Following, Prause (1999) and Aas and Haff (2006), the probability density function of a GH random variable \(x \) is given by:

\[
f_{GH}(x; \lambda, \delta, \alpha, \mu_x, \beta) = \frac{(\alpha^2 - \beta^2)^{\lambda/2} K_{\lambda-1/2} \left(\alpha \sqrt{\delta^2 + (x - \mu_x)^2} \right) \exp(\beta(x - \mu_x))}{\sqrt{2\pi} \alpha^{\lambda-1/2} \delta^\lambda K_\lambda \left(\delta \sqrt{\alpha^2 - \beta^2} \right) \left(\sqrt{\delta^2 + (x - \mu_x)^2} \right)^{1/2-\lambda}}, \tag{A.1}
\]

where \(K_j \) is the modified Bessel function\(^{11}\) of the third kind of order \(j \) and \(x \in \mathbb{R} \). The parameters must satisfy the conditions:

\[
\begin{align*}
\delta & \geq 0, \quad |\beta| < \alpha \text{ if } \lambda > 0, \\
\delta & > 0, \quad |\beta| < \alpha \text{ if } \lambda = 0, \\
\delta & > 0, \quad |\beta| \leq \alpha \text{ if } \lambda < 0.
\end{align*}
\]

The tails of the GH distribution behave as:

\[
f_{GH}(x) \sim c |x|^{\lambda-1} \exp(-\alpha |x| + \beta x) \text{ as } x \to \pm \infty, \quad \forall \lambda,
\]

where \(c \) is a constant and hence, as long as \(|\beta| \neq \alpha \), the GH distribution has two semiheavy tails.

The GH distribution can be represented as a Normal mean-variance mixture with Generalized Inverse Gaussian (GIG) distribution as a mixing distribution. This means that a GH variable \(X \) can be represented as:

\[
X = \mu_X + \beta Z + \sqrt{Z} \epsilon, \quad \epsilon \sim N(0, 1), \quad Z \sim GIG(\lambda, \delta, \gamma),
\]

with \(\epsilon \) and \(Z \) independent and \(\gamma = \sqrt{\alpha^2 - \beta^2} \). It follows from (A.4) that \(X \mid Z = z \sim N(\mu_X + \beta Z, Z) \). The density of the GIG distribution is given by:

\[
f_{GIG}(z; \lambda, \delta, \gamma) = \left(\frac{\gamma}{\delta} \right)^\lambda \frac{z^{\lambda-1}}{2K_\lambda(\gamma\delta)} \exp\left[-\frac{1}{2} (\delta^2 z^{-1} + \gamma^2 z) \right]. \tag{A.5}
\]

\(^{11}\)The modified Bessel function of the third kind with order \(j \), which we denote as \(K_j(\cdot) \), has the integral representation: \(K_j(\bar{x}) = \frac{1}{2} \int_0^\infty e^{-\bar{x} t} J_{j}(t) dt \), where \(J_j(t) \) is the Bessel function of the first kind of order \(j \).
Letting \(\lambda = -\nu/2 \) (\(\nu > 0 \)) and \(\alpha = |\beta| \) in equation (A.1) (that is, \(\gamma = 0 \)), we obtain the GH skew Student \(t \)-Distribution. Its probability density function is given by:

\[
f_{GH\text{skewt}}(\omega; \nu, \delta, \mu_x, \beta) = \frac{2^{\frac{\nu-1}{2}} \delta^{\nu} |\beta|^{\frac{\nu-1}{2}} \text{K}_{\frac{\nu+1}{2}} \left[\sqrt{\beta^2 \delta^2 + (x - \mu_x)^2} \right] \exp \left(\beta (x - \mu_x) \right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi} \delta \Gamma\left(\frac{\nu}{2}\right)},
\]

(A.6)

and

\[
f_{GH\text{skewt}}(\omega; \nu, \delta, \mu_x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi} \delta \Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{(x - \mu_x)^2}{\delta^2} \right]^{-(\nu+1)/2},
\]

(A.7)

for \(\beta \neq 0 \) and \(\beta = 0 \), respectively and where \(\Gamma(\cdot) \) is the gamma function. The density \(f_{GH\text{skewt}}(x; \nu, \delta, \mu_x) \) in (A.7) is known as the noncentral Student’s \(t \)-distribution with \(\nu \) degrees of freedom, expectation \(\mu_x \), and variance \(\delta^2 / (\nu - 2) \).

The first four moments of a \(GH \) skew Student \(t \)-distributed random variable \(X \) are:

\[
E(X) = \mu + \frac{\beta \delta^2}{\nu - 2}, \quad (A.8)
\]

\[
\text{Var}(X) = \frac{2\beta^2 \delta^4}{(\nu - 2)(\nu - 4)} + \frac{\delta^2}{\nu - 2}, \quad (A.9)
\]

\[
\text{Skewness}(X) = \frac{2(\nu - 4)^{1/2} \beta \delta}{[2\beta^2 \delta^2 + (\nu - 2)(\nu - 4)]^{3/2}} \left[3(\nu - 2) + \frac{8\beta^2 \delta^2}{\nu - 6} \right], \quad (A.10)
\]

\[
\text{Kurtosis}(X) = \frac{6}{[2\beta^2 \delta^2 + (\nu - 2)(\nu - 4)]^2} \times \left[(\nu - 2)^2(\nu - 4) + \frac{16\beta^4 \delta^2(\nu - 2)(\nu - 4)}{\nu - 6} + \frac{8\beta^4 \delta^4(5\nu - 22)}{(\nu - 6)(\nu - 8)} \right]. \quad (A.11)
\]

We observe that for the mean and variance to exist, \(\nu > 2 \) and \(\nu > 4 \), respectively. The variance is only finite when \(\nu > 4 \), as opposed to the symmetric Student’s \(t \)-distribution. Furthermore, skewness and (excess) kurtosis are defined only if \(\nu > 6 \) and \(\nu > 8 \), respectively. It follows from equation (A.3) that in the tails, the \(GH \) skew \(t \)-density is given by:

\[
f_{GH\text{skewt}}(x) \sim c |x|^{-\nu/2 - 1} \exp(-|\beta x| + \beta x) \text{ as } x \to \pm \infty.
\]

(A.12)

Thus, we have a heavy tail decaying as:

\[
f_{GH\text{skewt}}(x) \sim c |x|^{-\nu/2 - 1} \text{ if } \begin{cases} \beta < 0 \text{ and } x \to -\infty \end{cases},
\]

(A.13)

and a light tail decaying as

\[
f_{GH\text{skewt}}(x) \sim c |x|^{-\nu/2 - 1} \exp(-2|\beta x|) \text{ if } \begin{cases} \beta < 0 \text{ and } x \to +\infty \end{cases}.
\]

(A.14)

Thus the \(GH \) skew \(t \)-distribution has one heavy and one semiheavy tail. The heavy tail shows polynomial and the light tail exponential behavior. It is the only member of \(GH \) family of distributions to have this property. Thus the \(GH \) skew student \(t \)-distribution is able to model substantially
skewed and heavy tailed data, as found for example in financial markets. The tails of the GH skew student t-distribution are characterized solely by parameters β and ν, which jointly determine the degree of skewness and heavy tailedness. Finally, note that the heavy tail of the GH skew student t-distribution is heavier than the tails of the symmetric Student t-distribution, which have two tails decaying as polynomials and decay as:

$$f_{GHt}(x) \sim const |x|^{-\nu-1} \text{ as } x \to \pm \infty.$$ \hfill (A.15)

Appendix B

The MCMC Algorithm for the SVSKt Model

This Appendix includes each sampling step, in detail, of the MCMC algorithm proposed by Nakajima and Omori (2012) for the SVSKt model. For the prior distributions of μ and β, they assume $\mu \sim N(\mu_0, \sigma_0^2)$ and $\beta \sim N(\beta_0, \sigma_0^2)$.

B.1 Generation of the parameters (ϕ, σ, ρ, μ) (steps 2–4)

Step 2. The conditional posterior probability density $\pi(\phi \mid \sigma, \rho, \mu, \beta, h, z, y)(\equiv \pi(\phi \mid \cdot))$ is

$$\pi(\phi \mid \cdot) \propto \pi(\phi) \sqrt{1 - \phi^2} \exp \left\{ -\frac{(1 - \phi^2) \bar{h}_1^2}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{t=1}^{n-1} \left(\frac{(\bar{h}_{t+1} - \phi \bar{h}_t - \bar{y}_t)^2}{\sigma^2} \right) \right\} \propto \pi(\phi) \sqrt{1 - \phi^2} \exp \left\{ -\frac{(\phi - \mu_\phi)^2}{2\sigma_\phi^2} \right\},$$ \hfill (A.16)

where $\bar{h}_t = h_t - \mu$, $\bar{y}_t = \rho \sigma (y_t e^{-h_t/2} - \beta \bar{z}_t) / \sqrt{\bar{z}_t}$, $\bar{z}_t = z_t - \mu_z$, $\mu_\phi = \sum_{t=1}^{n-1} (\bar{h}_{t+1} - \bar{y}_t) / \bar{h}_t$, and

$$\sigma_\phi^2 = \frac{\sigma^2(1 - \rho^2)}{\rho^2 \bar{h}_1 + \sum_{t=2}^{n-1} \bar{h}_t^2}.$$ \hfill (A.17)

In order to sample from this conditional posterior distribution, Nakajima and Omori (2012) implement the Metropolis–Hastings (MH) algorithm. They propose a candidate, $\phi^* \sim TN_{(-1,1)}(\mu_\phi, \sigma_\phi^2)$, where $TN_{(a,b)}(\mu, \sigma^2)$ denotes the Normal distribution with mean μ and variance σ^2 truncated on the interval (a, b). Then, they accept it with the probability given by

$$\min \left\{ \frac{\pi(\phi^*) \sqrt{1 - \phi^2}}{\pi(\phi) \sqrt{1 - \phi^2}}, 1 \right\}.$$ \hfill (A.18)

Step 3. Because the joint conditional posterior probability density $\pi(\theta \mid \phi, \mu, \beta, h, z, y)(\equiv \pi(\theta \mid \cdot))$ of $\theta = (\sigma, \rho)'$ is given by $\pi(\theta \mid \cdot) \propto \pi(\theta) \sigma^{n(1 - \rho^2)^{n-1}} \exp \left\{ -\frac{(1 - \phi^2)^2 \bar{h}_1^2}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{t=1}^{n-1} \left(\frac{(\bar{h}_{t+1} - \phi \bar{h}_t - \bar{y}_t)^2}{\sigma^2} \right) \right\}$, we have a probability density from which it is not easy to sample. Nakajima and Omori (2012) apply the MH algorithm based on a Normal approximation of the density around the mode.
As there is a constraint, \(R = \{ \vartheta : \sigma > 0, |\rho| < 1 \} \), on the parameter space of the posterior distribution, they consider the transformation \(\vartheta \) to \(\omega = (\omega_1, \omega_2)' \), where \(\omega_1 = \log \sigma \), and \(\omega_2 = \log(1 + \rho) - \log(1 - \rho) \), to generate a candidate using a Normal distribution. They first search for \(\vartheta \) that approximately maximizes \(\pi(\vartheta | \cdot) \), and obtain its transformed value \(\tilde{\omega} \). They next generate a candidate \(\omega^* \sim N(\omega_*, \Sigma_*) \), where \(\omega_* = \tilde{\omega} + \Sigma_* \frac{\partial \log \pi(\omega | \cdot)}{\partial \omega} \bigg|_{\omega = \tilde{\omega}} \) and \(\Sigma_*^{-1} = -\frac{\partial^2 \log \pi(\omega | \cdot)}{\partial \omega^2} \bigg|_{\omega = \tilde{\omega}} \), where \(\tilde{\pi}(\omega | \cdot) \) is a transformed conditional posterior density. Then, they accept the candidate \(\omega^* \) with probability \(\min \left\{ \frac{\tilde{\pi}(\omega^* | f_N(\omega^* | \omega_*), J(\omega^*))}{\tilde{\pi}(\omega | f_N(\omega | \omega_*), J(\omega))}, 1 \right\} \), where \(f_N(x | \mu, \Sigma) \) denotes the probability density function of a Normal distribution with mean \(\mu \) and covariance matrix \(\Sigma \), and \(J(\cdot) \) is the Jacobian for the transformation, that is, \(J(\vartheta) = |\frac{\partial \vartheta}{\partial \omega} | + \frac{2}{\sigma(1 - \rho^2)} \). The values of \((\vartheta, \vartheta^*) \) are evaluated at \((\omega, \omega^*) \), respectively.

Step 4. The conditional posterior probability density \(\pi(\vartheta | \phi, \sigma, \rho, \nu, \beta, \mu, h, z, y)(\equiv \pi(\vartheta | \cdot)) \) is given by \(\pi(\vartheta | \cdot) \propto \exp\left\{-\frac{(\mu - \rho \beta)^2}{2\sigma^2} - \frac{(1 - \rho^2)\beta_0^2}{2\sigma^2} - \frac{n^{-1}}{2\sigma^2} \sum_{t=1}^{n-1} (\tilde{\nu}_t - \tilde{\phi}_t - \tilde{\pi}_t)^2 \right\} \), from which Nakajima and Omori (2012) generate \(\mu \sim N(\tilde{\mu}, \sigma_\mu^2) \), where \(\sigma_\mu^2 = \left\{ \frac{1}{\sigma_0^2} + \frac{(1 - \rho^2)(1 - \rho^2) + (n - 1)(1 - \rho^2)}{\sigma^2(1 - \rho^2)} \right\}^{-1} \), and \(\tilde{\mu} = \sigma_\mu^2 \left\{ \frac{\mu_0}{\sigma_0^2} + \frac{(1 - \rho^2)(1 - \rho^2)h_0 + (1 - \rho^2)}{\sigma^2(1 - \rho^2)} \sum_{t=1}^{n-1} (\tilde{h}_t - \tilde{\phi}_t - \tilde{\pi}_t)^2 \right\} \).

B.2 Generation of skew-t parameters (\(\beta, \nu, z \) (steps 5–7)

Step 5. The posterior probability density \(\pi(\beta | \phi, \sigma, \rho, \nu, h, z, y)(\equiv \pi(\beta | \cdot)) \) is given by \(\pi(\beta | \cdot) \propto \exp\left\{-\frac{(\beta - \beta_0)^2}{2\sigma_0^2} - \frac{n^{-1}}{2\sigma^2} \sum_{t=1}^{n-1} (\tilde{h}_t - \tilde{\phi}_t - \tilde{\pi}_t)^2 \right\} \), from which they generate \(\beta \sim N(\tilde{\mu}_\beta, \sigma_\beta^2) \) where \(\sigma_\beta^2 = \left\{ \frac{1}{\sigma_0^2} + \frac{1}{\sigma(1 - \rho^2)} \sum_{t=1}^{n-1} \frac{z_t^2}{z_t \tilde{z}_t} + \frac{z_t^2}{z_t \tilde{z}_t} \right\}^{-1} \), and \(\tilde{\mu}_\beta = \sigma_\beta^2 \left\{ \frac{\beta_0}{\sigma_0^2} + \frac{1}{\sigma(1 - \rho^2)} \sum_{t=1}^{n-1} \frac{z_t x_t}{z_t \tilde{z}_t} + \frac{y_t z_t}{z_t \tilde{z}_t} - \frac{\rho}{1 - \rho^2} \sum_{t=1}^{n-1} \frac{z_t^2}{z_t \tilde{z}_t} \right\} \).

Step 6. Because, as in Step 3, it is not easy to sample directly from the posterior probability density of \(\nu, \pi(\nu | \cdot) \propto \pi(\nu) \prod_{t=1}^{n} \frac{(\nu/2)^{nu/2} e^{-nu/2}}{2\pi^{nu/2} e^{nu/2}} \exp\left\{-\frac{nu}{2\nu} \right\} \exp\left\{-\frac{n^{-1}}{2\nu} \sum_{t=1}^{n-1} \frac{(nu \nu_t e^\nu_t/2)^2}{2z_t e^{z_t/2}} - \frac{n^{-1} (\tilde{h}_t - \tilde{\phi}_t - \tilde{\pi}_t)^2}{2\sigma^2(1 - \rho^2)} \right\} \right\} \right\} \), for \(\nu > 4 \), they draw a sample of \(\nu \) using the MH algorithm based on the Normal approximation of the posterior probability density. They generate a candidate \(\nu^* \) using a Normal distribution truncated on the interval \((4, \infty)\).

Step 7. The conditional posterior probability density of the latent variable \(z_t \) is \(\pi(z_t | \theta, h, y) \propto g(z_t) \times z_t^{(\nu_t/2 + 1)} \exp\left\{-\frac{nu}{2\nu} \right\} \) and \(g(z_t) = \exp\left\{-\frac{(nu \nu_t e^\nu_t/2)^2}{2z_t e^{z_t/2}} - \frac{n^{-1} (\tilde{h}_t - \tilde{\phi}_t - \tilde{\pi}_t)^2}{2\sigma^2(1 - \rho^2)} \right\} \), where \(1(\cdot) \) is an indicator function. Using the MH algorithm, they generate a candidate \(z_t^* \sim IG(\nu_t/2 + 1, \nu) \) and accept it with probability \(\min\left\{ \frac{g(z_t^*)}{g(z_t)} \}, 1 \right\} \).

B.3 Generation of volatility latent variable h (step 8)

Step 8. Nakajima and Omori (2012) extend the method developed by Omori and Watanabe (2008) for sampling \(h_t \) in the SVSKt model using the multi-move sampler, where the efficient strategy is to sample from the conditional posterior distribution of \(h = \{h_t\}_{t=1}^n \) by dividing it into several...
blocks and by sampling each block given the other blocks. The details of the multi-move sampler are described in Appendix C.

Appendix C
The Multi-Move Sampler for the SVSKt Model

Extending the algorithm of Omori and Watanabe (2008), Nakajima and Omori (2012) describe the multi-move sampler for sampling the volatility variable h in the SVSKt model. Defining $\alpha_t = h_t - \mu$, for $t = 0, \ldots, n$ and $\gamma = \exp(\mu/2)$, they consider the state-space model with respect to $\{\alpha_t\}_{t=1}^n$ as:

$$y_t = \{\beta z_t + \sqrt{z_t} \epsilon_t\} \exp(\alpha_t/2), \quad t = 1, \ldots, n, \quad (A.17)$$
$$\alpha_{t+1} = \phi \alpha_t + \eta_t, \quad t = 0, \ldots, n - 1. \quad (A.18)$$

Let $\tilde{\Theta} = (\theta, \alpha_r, \alpha_{r+d+1}, z_r, \ldots, z_{r+d}, y_r, \ldots, y_{r+d})$. To sample a block $(\alpha_{r+1}, \ldots, \alpha_{r+d})$ from its joint conditional posterior density using the MH algorithm, $(r \geq 0, d \geq 1, r + d \leq n)$, they sample disturbances

$$(\eta_r, \ldots, \eta_{r+d-1}) \sim \pi(\eta_r, \ldots, \eta_{r+d-1} | \tilde{\Theta}) \propto \prod_{t=r}^{r+d} \frac{1}{\sqrt{2\pi \sigma_t}} \exp \left\{ -\frac{(y_t - \tilde{\mu}_t)^2}{2\sigma_t^2} \right\} \times \prod_{t=r}^{r+d-1} f(\eta_t) \times f(\alpha_{r+d}),$$

where $\tilde{\mu}_t = \{\beta z_t + \rho_t \sqrt{z_t} (\alpha_{t+1} - \phi \alpha_t) / \sigma\} \exp(\alpha_t/2) \gamma$, $\tilde{\sigma}_t^2 = (1 - \rho_t^2)z_t \exp(\alpha_t) \gamma^2$, $f(\alpha_{r+d}) = \exp(- \frac{(\alpha_{r+d+1} - \phi \alpha_{r+d})^2}{2\sigma_t^2}) \mathbf{1}(r + d < n)$, and $\rho_t = \rho \mathbf{1}(r + d < n)$. To determine the block $(r$ and $d)$, they use the stochastic knots; see, for example, Shephard and Pitt (1997). Let $\eta = (\eta_r, \ldots, \eta_{r+d-1})'$ and $\alpha = (\alpha_{r+1}, \ldots, \alpha_{r+d})'$. To construct a proposal density based on the Normal approximation of the posterior density of η, they first define:

$$L = \sum_{t=r}^{r+d} \left\{ -\frac{\alpha_t}{2} - \frac{(y_t - \tilde{\mu}_t)^2}{2\sigma_t^2} \right\} + \log f(\alpha_{r+d}),$$
$$\delta = (\delta_{r+1}, \ldots, \delta_{r+d})', \quad \delta_t = \frac{\partial L}{\partial \alpha_t},$$
$$Q = -E\left(\frac{\partial^2 L}{\partial \alpha \partial \alpha'} \right) = \begin{bmatrix} A_{r+1} & B_{r+2} & 0 & \cdots & 0 \\ B_{r+2} & A_{r+2} & B_{r+3} & \cdots & 0 \\ 0 & B_{r+3} & A_{r+3} & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & B_{r+d} \\ 0 & \cdots & 0 & B_{r+d} & A_{r+d} \end{bmatrix},$$
$$A_t = -E\left(\frac{\partial^2 L}{\partial \alpha_t} \right),$$
$$B_t = -E\left(\frac{\partial^2 L}{\partial \alpha_t \partial \alpha_{t-1}} \right),$$

A-5
for \(t = r + 2, \ldots, r + d \), and \(B_{r+1} = 0 \). For the second derivatives, they take the expectations with respect to \(y_t \)'s and obtain

\[
A_t = \frac{1}{\sigma_t^2} + \frac{1}{\sigma_{t-1}^2} \left(\frac{\partial \hat{\mu}_t}{\partial \alpha_t} \right)^2 + \frac{1}{\sigma_{t-1}^2} \left(\frac{\partial \hat{\mu}_{t-1}}{\partial \alpha_t} \right)^2 + \frac{\phi^2}{\sigma_t^2} I(t=r+d<n), \quad \text{and} \\
B_t = \frac{1}{\sigma_{t-1}^2} \times \frac{\partial \hat{\mu}_{t-1}}{\partial \alpha_{t-1}} \times \frac{\partial \hat{\mu}_{t-1}}{\partial \alpha_t}.
\]

Applying the second-order Taylor expansion to the log of the posterior density around the mode, \(\eta = \hat{\eta} \), they obtain an approximate Normal density as follows:

\[
\log \pi(\eta | \Theta) \approx \tilde{L} + \frac{\partial L}{\partial \eta} \bigg|_{\eta=\hat{\eta}} (\eta - \hat{\eta}) + \frac{1}{2} (\eta - \hat{\eta})' E \left(\frac{\partial^2 L}{\partial \eta \partial \eta'} \right) \bigg|_{\eta=\hat{\eta}} (\eta - \hat{\eta}) + \sum_{t=r}^{r+d-1} (-\frac{1}{2} \eta_t^2) + (c),
\]

\[
= \tilde{L} + \hat{\delta} (\hat{\alpha} - \hat{\alpha}) - \frac{1}{2} (\hat{\alpha} - \hat{\alpha})' \hat{Q} (\hat{\alpha} - \hat{\alpha}) + \sum_{t=r}^{r+d-1} (-\frac{1}{2} \eta_t^2) + (c),
\]

\[
= \log q(\eta | \hat{\Theta}),
\]

where \(c \) is a constant, \(\tilde{L} \), \(\hat{\delta} \) and \(\hat{Q} \) is the value of \(L \), \(\delta \) and \(Q \) at \(\alpha = \hat{\alpha} \) (or, equivalently at \(\eta = \hat{\eta} \)). It can be shown that the proposal density \(q(\eta | \hat{\Theta}) \) is the posterior density of \(\eta \) for a linear Gaussian state-space model given by (A.19)-(A.21). The mode \(\hat{\eta} \) can be obtained by repeating the following algorithm until it converges:

1. Initialize \(\hat{\eta} \) and compute \(\hat{\alpha} \) at \(\eta = \hat{\eta} \) using the state equation (14) recursively;
2. Evaluate \(\hat{\alpha}' \), \(\hat{A}_t \)'s and \(\hat{B}_t \)'s at \(\alpha = \hat{\alpha} \);
3. Let \(\hat{D}_{t+1} = \hat{A}_{t+1} \) and \(\hat{b}_{t+1} = \hat{\delta}_{t+1} \). Compute the following variables recursively for \(t = r + 2, \ldots, r + d \): \(\hat{D}_t = \hat{A}_t - \hat{D}_t^{-1} \hat{B}_t \), \(\hat{K}_t = \sqrt{\hat{D}_t} \), \(\hat{b}_t = \hat{\delta}_t - \hat{B}_t \hat{D}_t^{-1} \hat{b}_{t-1} \), and \(\hat{B}_{t+r+1} = 0 \);
4. Define an auxiliary variable \(\hat{\gamma}_t = \hat{\gamma}_t + \hat{D}_t^{-1} \hat{b}_t \), where \(\hat{\gamma}_t = \hat{\alpha}_t - \hat{D}_t^{-1} \hat{B}_{t+1} \hat{\alpha}_{t+1} \), for \(t = r + 1, \ldots, r + d \), and \(\hat{\alpha}_{r+d+1} = \alpha_{r+d+1} \);
5. Consider the linear Gaussian state-space model formulated by:

\[
\begin{align*}
\hat{y}_t &= Z_t \alpha_t + G_t \zeta_t, & t = r + 1, \ldots, r + d \quad (A.19) \\
\alpha_{t+1} &= \phi \alpha_t + H_t \zeta_t, & t = r, \ldots, r + d \quad (A.20) \\
\zeta_t &\sim N(0, I_2), \quad (A.21)
\end{align*}
\]

where \(z_t = 1 + \phi \hat{D}_t^{-1} \hat{B}_{t+1}, \ G_t = (\hat{K}^{-1}, \hat{D}_t^{-1} \hat{B}_{t+1} \sigma) \), and \(H_t = (0, \sigma) \), for \(t = r + 1, \ldots, r + d \) and \(H_0 = (0, \frac{\sigma}{\sqrt{1 - \phi^2}}) \). Apply the Kalman filter and the disturbance smoother to this state-space model, and obtain the posterior mode \(\hat{\eta} \) and \(\hat{\alpha} \);
6. Go to 2.
In the MCMC sampling procedure, the current sample of η may be taken as an initial value of the $\hat{\eta}$ in Step 1. To sample η from the conditional posterior density, Nakajima and Omori (2012) implement the AR (Accept-Reject)-MH algorithm via the simulation smoother using the mode $\hat{\eta}$ to obtain the approximated linear Gaussian state-space model (A.19)-(A.21). See Omori and Watanabe (2008) and Takahashi et al. (2009) for details of the AR-MH algorithm.
References

R-4
<table>
<thead>
<tr>
<th>Index</th>
<th>Obs.</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Excess Kurtosis</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBVL (Peru)</td>
<td>3246</td>
<td>0.0008</td>
<td>0.0149</td>
<td>-0.5287</td>
<td>10.8286</td>
<td>-0.1329</td>
<td>0.1282</td>
</tr>
<tr>
<td>MERVAL (Argentina)</td>
<td>4439</td>
<td>0.0005</td>
<td>0.0215</td>
<td>-0.2801</td>
<td>5.3395</td>
<td>-0.1476</td>
<td>0.1612</td>
</tr>
<tr>
<td>MEXBOL (México)</td>
<td>4529</td>
<td>0.0006</td>
<td>0.0151</td>
<td>0.0300</td>
<td>6.9916</td>
<td>-0.1431</td>
<td>0.1215</td>
</tr>
<tr>
<td>IBOVESPA (Brazil)</td>
<td>4456</td>
<td>0.0006</td>
<td>0.0213</td>
<td>0.2994</td>
<td>13.1430</td>
<td>-0.1723</td>
<td>0.2882</td>
</tr>
<tr>
<td>IPSA (Chile)</td>
<td>4489</td>
<td>0.0003</td>
<td>0.0111</td>
<td>0.1332</td>
<td>7.9881</td>
<td>-0.0767</td>
<td>0.1180</td>
</tr>
<tr>
<td>S&P500 (USA)</td>
<td>4531</td>
<td>0.0002</td>
<td>0.0127</td>
<td>-0.2272</td>
<td>7.4884</td>
<td>-0.0947</td>
<td>0.1096</td>
</tr>
</tbody>
</table>

Table 1. Summary Statistics for Daily Stock Returns Data
Table 2. MCMC Estimation Results of the SVSKt Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>S.D.</th>
<th>95% interval</th>
<th>Inefficiency</th>
<th>Parameter</th>
<th>Mean</th>
<th>S.D.</th>
<th>95% interval</th>
<th>Inefficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) IGBVL (Peru)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ii) MERVAL (Argentina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.8618</td>
<td>0.0213</td>
<td>[0.8197, 0.9011]</td>
<td>417.43</td>
<td>ϕ</td>
<td>0.9535</td>
<td>0.0086</td>
<td>[0.9347, 0.9681]</td>
<td>129.12</td>
</tr>
<tr>
<td>σ</td>
<td>0.9173</td>
<td>0.0682</td>
<td>[0.7602, 1.0380]</td>
<td>539.46</td>
<td>σ</td>
<td>0.2717</td>
<td>0.0269</td>
<td>[0.2264, 0.3316]</td>
<td>226.88</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.0475</td>
<td>0.0370</td>
<td>[-0.1197, 0.0245]</td>
<td>59.91</td>
<td>ρ</td>
<td>-0.2977</td>
<td>0.0436</td>
<td>[-0.3807, -0.2106]</td>
<td>35.47</td>
</tr>
<tr>
<td>μ</td>
<td>-8.8002</td>
<td>0.1686</td>
<td>[-9.0995, -8.4321]</td>
<td>233.32</td>
<td>μ</td>
<td>-8.2705</td>
<td>0.0951</td>
<td>[-8.4565, -8.0816]</td>
<td>26.19</td>
</tr>
<tr>
<td>β</td>
<td>-0.0286</td>
<td>0.1508</td>
<td>[-0.3247, 0.2678]</td>
<td>16.87</td>
<td>β</td>
<td>-0.2464</td>
<td>0.0811</td>
<td>[-0.4180, -0.0952]</td>
<td>82.38</td>
</tr>
<tr>
<td>ν</td>
<td>35.6892</td>
<td>5.4920</td>
<td>[25.9746, 47.2584]</td>
<td>88.54</td>
<td>ν</td>
<td>12.2135</td>
<td>1.7827</td>
<td>[9.0445, 15.9292]</td>
<td>286.25</td>
</tr>
<tr>
<td>(iii) MEXBOL (Mexico)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(iv) IBOVESPA (Brazil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9683</td>
<td>0.0057</td>
<td>[0.9562, 0.9785]</td>
<td>90.33</td>
<td>ϕ</td>
<td>0.9711</td>
<td>0.0053</td>
<td>[0.9601, 0.9806]</td>
<td>67.00</td>
</tr>
<tr>
<td>σ</td>
<td>0.2362</td>
<td>0.0206</td>
<td>[0.2015, 0.2847]</td>
<td>176.82</td>
<td>σ</td>
<td>0.1969</td>
<td>0.0168</td>
<td>[0.1696, 0.2358]</td>
<td>246.63</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.3948</td>
<td>0.0444</td>
<td>[-0.4769, -0.3014]</td>
<td>81.93</td>
<td>ρ</td>
<td>-0.3464</td>
<td>0.0452</td>
<td>[-0.4333, -0.2551]</td>
<td>37.82</td>
</tr>
<tr>
<td>β</td>
<td>-0.1076</td>
<td>0.1194</td>
<td>[-0.3389, 0.1326]</td>
<td>37.20</td>
<td>β</td>
<td>-0.0342</td>
<td>0.1107</td>
<td>[-0.2437, 0.1954]</td>
<td>38.07</td>
</tr>
<tr>
<td>(v) IPSA (Chile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(vi) S&P 500 (U.S.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9653</td>
<td>0.0062</td>
<td>[0.9520, 0.9763]</td>
<td>82.62</td>
<td>ϕ</td>
<td>0.9703</td>
<td>0.0040</td>
<td>[0.9622, 0.9778]</td>
<td>40.86</td>
</tr>
<tr>
<td>σ</td>
<td>0.2226</td>
<td>0.0196</td>
<td>[0.1878, 0.2656]</td>
<td>179.16</td>
<td>σ</td>
<td>0.2382</td>
<td>0.0135</td>
<td>[0.2125, 0.2652]</td>
<td>89.75</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.2970</td>
<td>0.0440</td>
<td>[-0.3835, -0.2120]</td>
<td>26.06</td>
<td>ρ</td>
<td>-0.6864</td>
<td>0.0323</td>
<td>[-0.7449, -0.6199]</td>
<td>76.70</td>
</tr>
<tr>
<td>β</td>
<td>-0.0852</td>
<td>0.1872</td>
<td>[-0.4475, 0.2858]</td>
<td>37.72</td>
<td>β</td>
<td>-0.7842</td>
<td>0.1899</td>
<td>[-1.1837, -0.4380]</td>
<td>116.81</td>
</tr>
<tr>
<td>ν</td>
<td>30.2523</td>
<td>5.1130</td>
<td>[21.1299, 41.1597]</td>
<td>166.06</td>
<td>ν</td>
<td>24.8685</td>
<td>3.8282</td>
<td>[18.2556, 33.5375]</td>
<td>189.21</td>
</tr>
</tbody>
</table>
Table 3. MCMC Estimation Results of the SVt Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>S.D.</th>
<th>95% interval</th>
<th>Inefficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) IGBVL (Peru)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.8613</td>
<td>0.0209</td>
<td>[0.8183, 0.9024]</td>
<td>407.89</td>
</tr>
<tr>
<td>σ</td>
<td>0.9823</td>
<td>0.0964</td>
<td>[0.7655, 1.1565]</td>
<td>634.21</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.0382</td>
<td>0.0386</td>
<td>[-0.1122, 0.0401]</td>
<td>104.68</td>
</tr>
<tr>
<td>μ</td>
<td>-8.7154</td>
<td>0.1639</td>
<td>[-9.0253, -8.3828]</td>
<td>156.46</td>
</tr>
<tr>
<td>ν</td>
<td>36.1646</td>
<td>5.7485</td>
<td>[26.2375, 48.8401]</td>
<td>105.50</td>
</tr>
<tr>
<td>(ii) MERVAL (Argentina)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9533</td>
<td>0.0081</td>
<td>[0.9358, 0.9674]</td>
<td>103.72</td>
</tr>
<tr>
<td>σ</td>
<td>0.2707</td>
<td>0.0244</td>
<td>[0.2279, 0.3256]</td>
<td>197.98</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.2810</td>
<td>0.0434</td>
<td>[-0.3652, -0.1945]</td>
<td>52.60</td>
</tr>
<tr>
<td>μ</td>
<td>-8.2351</td>
<td>0.0948</td>
<td>[-8.4186, -8.0462]</td>
<td>20.95</td>
</tr>
<tr>
<td>ν</td>
<td>12.3573</td>
<td>1.9107</td>
<td>[9.2705, 16.8398]</td>
<td>253.81</td>
</tr>
<tr>
<td>(iii) MEXBOL (Mexico)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9694</td>
<td>0.0054</td>
<td>[0.9584, 0.9788]</td>
<td>74.32</td>
</tr>
<tr>
<td>σ</td>
<td>0.2282</td>
<td>0.0178</td>
<td>[0.1973, 0.2661]</td>
<td>160.80</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.4037</td>
<td>0.0471</td>
<td>[-0.4951, -0.3126]</td>
<td>94.09</td>
</tr>
<tr>
<td>μ</td>
<td>-8.9333</td>
<td>0.1122</td>
<td>[-9.1537, -8.7119]</td>
<td>17.26</td>
</tr>
<tr>
<td>ν</td>
<td>17.2837</td>
<td>3.2351</td>
<td>[12.0182, 24.5254]</td>
<td>280.95</td>
</tr>
<tr>
<td>(iv) IBOVESPA (Brazil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9564</td>
<td>0.0067</td>
<td>[0.9423, 0.9687]</td>
<td>59.67</td>
</tr>
<tr>
<td>σ</td>
<td>0.2528</td>
<td>0.0176</td>
<td>[0.2219, 0.2912]</td>
<td>169.99</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.3244</td>
<td>0.0447</td>
<td>[-0.4091, -0.2330]</td>
<td>46.67</td>
</tr>
<tr>
<td>μ</td>
<td>-8.2198</td>
<td>0.0907</td>
<td>[-8.3970, -8.0400]</td>
<td>11.09</td>
</tr>
<tr>
<td>(v) IPSA (Chile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9649</td>
<td>0.0061</td>
<td>[0.9521, 0.9759]</td>
<td>85.17</td>
</tr>
<tr>
<td>σ</td>
<td>0.2253</td>
<td>0.0205</td>
<td>[0.1899, 0.2718]</td>
<td>283.75</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.2928</td>
<td>0.0438</td>
<td>[-0.3754, -0.2059]</td>
<td>43.86</td>
</tr>
<tr>
<td>μ</td>
<td>-9.4536</td>
<td>0.1004</td>
<td>[-9.6466, -9.2478]</td>
<td>23.10</td>
</tr>
<tr>
<td>ν</td>
<td>29.8385</td>
<td>4.8740</td>
<td>[21.3740, 40.5813]</td>
<td>165.48</td>
</tr>
</tbody>
</table>
Table 4. Estimated Log Marginal Likelihoods (Log-ML)

<table>
<thead>
<tr>
<th></th>
<th>SVSKt</th>
<th>SVt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) IGBVL (Peru)</td>
<td>9812.000</td>
<td>9781.776</td>
</tr>
<tr>
<td></td>
<td>(1.582)</td>
<td>(1.557)</td>
</tr>
<tr>
<td>(ii) MERVAL (Argentina)</td>
<td>11469.963</td>
<td>11464.903</td>
</tr>
<tr>
<td></td>
<td>(0.806)</td>
<td>(0.684)</td>
</tr>
<tr>
<td>(iii) MEXBOL (Mexico)</td>
<td>13377.385</td>
<td>13380.232</td>
</tr>
<tr>
<td></td>
<td>(0.580)</td>
<td>(0.704)</td>
</tr>
<tr>
<td>(iv) IBOVESPA (Brazil)</td>
<td>11624.206</td>
<td>11614.349</td>
</tr>
<tr>
<td></td>
<td>(0.996)</td>
<td>(0.627)</td>
</tr>
<tr>
<td>(v) IPSA (Chile)</td>
<td>14583.355</td>
<td>14586.065</td>
</tr>
<tr>
<td></td>
<td>(0.557)</td>
<td>(0.653)</td>
</tr>
</tbody>
</table>

*Standard errors of the log-ML in parentheses.
Table 5. Prior Sensitivity Analysis for the SVSKt Model

<table>
<thead>
<tr>
<th>Prior #1</th>
<th>Prior #2</th>
<th>Prior #3</th>
<th>Prior #4</th>
<th>Prior #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.282 (0.150)</td>
<td>-0.028 (0.1489)</td>
<td>-0.027 (0.310)</td>
<td>-0.3247, 0.267</td>
<td>-0.320, 0.2675</td>
</tr>
<tr>
<td>16.87</td>
<td>15.71</td>
<td>9.72</td>
<td>35.689 (5.492)</td>
<td>36.728 (5.5969)</td>
</tr>
<tr>
<td>[25.974, 47.258]</td>
<td>[26.576, 48.3670]</td>
<td>[76.066, 297.526]</td>
<td>161.054 (56.355)</td>
<td>291.47</td>
</tr>
<tr>
<td>88.54</td>
<td>114.07</td>
<td>286.25</td>
<td>320.19</td>
<td>379.97</td>
</tr>
<tr>
<td>15.87</td>
<td>15.71</td>
<td>9.72</td>
<td>35.689 (5.492)</td>
<td>36.728 (5.5969)</td>
</tr>
<tr>
<td>[25.974, 47.258]</td>
<td>[26.576, 48.3670]</td>
<td>[76.066, 297.526]</td>
<td>161.054 (56.355)</td>
<td>291.47</td>
</tr>
<tr>
<td>88.54</td>
<td>114.07</td>
<td>286.25</td>
<td>320.19</td>
<td>379.97</td>
</tr>
<tr>
<td>(i) IGBVL (Peru)</td>
<td>(ii) Merval (Argentina)</td>
<td>(iii) MEXBOL (Mexico)</td>
<td>(iv) IBOVESPA (Brazil)</td>
<td>(v) IPSA (Chile)</td>
</tr>
<tr>
<td>-0.418, -0.095</td>
<td>-0.437, -0.102</td>
<td>-0.766, -0.1460</td>
<td>-0.7691, -0.174</td>
<td>-0.431, -0.107</td>
</tr>
<tr>
<td>82.38</td>
<td>73.46</td>
<td>106.15</td>
<td>146.31</td>
<td>91.94</td>
</tr>
<tr>
<td>12.213 (1.782)</td>
<td>12.456 (1.832)</td>
<td>20.164 (4.5284)</td>
<td>19.0319 (4.229)</td>
<td>11.143 (1.880)</td>
</tr>
<tr>
<td>286.25</td>
<td>320.19</td>
<td>379.97</td>
<td>410.92</td>
<td>309.20</td>
</tr>
<tr>
<td>-0.107 (0.119)</td>
<td>-0.101 (0.111)</td>
<td>-0.075 (0.157)</td>
<td>-0.85 (0.119)</td>
<td>-0.036 (0.127)</td>
</tr>
<tr>
<td>-0.338, 0.132</td>
<td>-0.316, 0.122</td>
<td>-0.375, 0.240</td>
<td>-0.309, 0.169</td>
<td>-0.267, 0.252</td>
</tr>
<tr>
<td>19.888 (3.223)</td>
<td>18.171 (3.056)</td>
<td>26.508 (5.93)</td>
<td>19.509 (5.378)</td>
<td>-0.113 (0.2703)</td>
</tr>
<tr>
<td>19.888 (3.223)</td>
<td>18.171 (3.056)</td>
<td>26.508 (5.93)</td>
<td>19.509 (5.378)</td>
<td>265.91</td>
</tr>
<tr>
<td>-0.034 (0.110)</td>
<td>-0.037 (0.113)</td>
<td>0.065 (0.191)</td>
<td>-0.036 (0.127)</td>
<td>-0.036 (0.127)</td>
</tr>
<tr>
<td>-0.243, 0.195</td>
<td>-0.245, 0.204</td>
<td>-0.275, 0.483</td>
<td>-0.267, 0.252</td>
<td>-0.267, 0.252</td>
</tr>
<tr>
<td>17.502 (2.630)</td>
<td>17.646 (3.099)</td>
<td>28.300 (5.648)</td>
<td>18.649 (4.511)</td>
<td>31.492 (6.457)</td>
</tr>
<tr>
<td>159.85</td>
<td>276.67</td>
<td>309.95</td>
<td>252.38</td>
<td>396.59</td>
</tr>
<tr>
<td>166.06</td>
<td>187.32</td>
<td>115.43</td>
<td>194.78</td>
<td>327.33</td>
</tr>
<tr>
<td>(v) IPSA (Chile)</td>
<td>-0.447, 0.2858</td>
<td>-0.676, 0.456</td>
<td>-0.630, 0.4476</td>
<td>-1.028, 0.702</td>
</tr>
<tr>
<td>37.72</td>
<td>56.60</td>
<td>56.82</td>
<td>25.53</td>
<td>36.74</td>
</tr>
<tr>
<td>30.252 (5.1130)</td>
<td>30.239 (4.755)</td>
<td>49.258 (8.425)</td>
<td>50.622 (9.0323)</td>
<td>106.411 (36.962)</td>
</tr>
<tr>
<td>21.129, 41.1597</td>
<td>[32.293, 40.970]</td>
<td>[34.818, 67.331]</td>
<td>[35.150, 70.457]</td>
<td>[48.214, 189.172]</td>
</tr>
<tr>
<td>166.06</td>
<td>187.32</td>
<td>115.43</td>
<td>194.78</td>
<td>327.33</td>
</tr>
</tbody>
</table>

The first row: posterior mean and standard deviation in parenthesis; the second row: 95% credible intervals in square brackets; the third row: inefficiency factor.
Figure 1. Densities of the GH Skew Student’s t-distribution. Parameter β varying using $\beta = 0$ (symmetric t), -2 and -4 with $\nu = 10$ fixed (Top); and parameter ν varying using $\nu = 5$, 10 and 15 with $\beta = -2$ fixed (Bottom).
Figure 2. Times series plots for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, IBOVESPA, MEXBOL, IPSA and S&P500 (1996/01/02 - 2013/12/30) daily returns.
Figure 3. MCMC estimation results of the SVSKt model for IGBVL data (Peru). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

Figure 4. MCMC estimation results of the SVSKt model for MERVAL data (Argentina). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
Figure 5. MCMC estimation results of the SVSKt model for MEXBOL data (Mexico). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

Figure 6. MCMC estimation results of the SVSKt model for IBOVESPA data (Brazil). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
Figure 7. MCMC estimation results of the SVSKt model for IPSA data (Chile). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

Figure 8. MCMC estimation results of the SVSKt model for S&P500 data (US). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
Figure 9. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.0286$ and $\nu = 35.6892$ for IGBVL Data (Peru)

Figure 10. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.2464$ and $\nu = 12.2135$ for MERVAL Data (Argentina)
Figure 11. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.1076$ and $\nu = 19.8882$ for MEXBOL Data (Mexico)

Figure 12. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.0342$ and $\nu = 17.5026$ for IBOVESPA Data (Brazil)
Figure 13. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.0853$ and $\nu = 30.2523$ for IPSA Data (Chile)

Figure 14. Density of the GH Skew Student’s t-distribution with parameters $\beta = -0.7842$ and $\nu = 24.8685$ for S&P500 Data (U.S.)
Figure 15. Log-volatility for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, MEXBOL, IPSA, IBOVESPA and S&P500 (1996/01/02 - 2013/12/30) daily returns.
Figure 16. MCMC estimation results of the SVt model for IGBVL data (Peru). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

Figure 17. MCMC estimation results of the SVt model for MERVAL data (Argentina). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
Figure 18. MCMC estimation results of the SVt model for MEXBOL data (Mexico). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).

Figure 19. MCMC estimation results of the SVt model for IBOVESPA data (Brazil). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
Figure 20. MCMC estimation results of the SVt model for IPSA data (Chile). Sample autocorrelations (Top), sample paths (Middle) and posterior densities (Bottom).
ÚLTIMAS PUBLICACIONES DE LOS PROFESORES
DEL DEPARTAMENTO DE ECONOMÍA

Libros

Ivan Rivera

Máximo Vega-Centeno

José Carlos Orihuela y José Ignacio Távara (Edt.)

Jorge Rojas

Waldo Mendoza

Carlos Contereras (Edt.)

Waldo Mendoza

Carlos Conteras (Edt.)

Ismael Muñoz

Cecilia Garavito

Alfredo Dammert Lira y Raúl García Carpio

