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Asymmetries in Volatility: An Empirical Study for the Peruvian
Stock and Forex Markets

Willy Alanya Gabriel Rodríguez
The University of Warwick Pontificia Universidad Católica del Perú

Abstract

Symmetric and asymmetric autoregressive conditional heteroskedasticity models and stochastic
volatility models are applied to daily data of Peruvian stock and Forex markets returns for the
period January 5, 1998 until December 30, 2011. Following the approach developed by Omori et
al. (2007), Bayesian estimation methodology is used with different structures in the behavior of the
disturbance terms. The results suggest the presence of asymmetric effects in both markets. In the
stock market, we find that negative shocks generate higher volatility than positive shocks. In the
Forex market, shocks related to episodes of depreciation create higher uncertainty in comparison
with episodes of appreciation. Thus, the Central Reserve Bank faces relatively major diffi culties
in its intention of smoothing Forex volatility. The model with the best fit in both returns is
the Asymmetric Stochastic Volatility with Normal errors. The stock market returns have greater
periods of volatility; however, both markets react to shocks in the economy, as they display similar
patterns and have a significant correlation for the sample period studied.

JEL Classification: C11, C12, C53, G12.

KeyWords: Asymmetries, GARCH, EGARCH, Stochastic Volatility, Stock Returns, Forex Re-
turns, Bayesian Estimation.

Resumen

Modelos de volatilidad estocástica y modelos de heterocedasticidad condicional autorregresiva
simétricos y asimétricos son aplicados a datos diarios de los retornos bursátiles y cambiarios peru-
anos para el período desde el 5 de Enero de 1998 hasta el 30 de Diciembre de 2011. Siguiendo el
enfoque desarrollado por Omori et al. (2007), se usa metodología Bayesiana con diferentes estruc-
turas en el comportamiento de los términos de perturbación. Los resultados sugieren la presencia
de efectos asimétricos en ambos mercados. En el mercado de valores, encontramos que los choques
negativos generan una mayor volatilidad que los choques positivos. En el mercado cambiario, los
choques relacionados con episodios de depreciación crean mayor incertidumbre en comparación con
episodios de apreciación. Por lo tanto, en este caso, el Banco Central de Reserva del Perú enfrenta
relativamente mayores dificultades en su intención de suavizar la volatilidad del tipo de cambio. El
modelo con el mejor ajuste en ambos rendimientos es el modelo de volatilidad estocástica asimétrico
con errores normales. Los rendimientos del mercado de valores tienen mayores períodos de volatil-
idad; sin embargo, los mercados reaccionan a las perturbaciones en la economía, ya que muestran
patrones similares y tienen una correlación significativa para el período de la muestra estudiada.

Clasificación JEL: C11, C12, C53, G12.

Palabras Claves: Asimetrías, Modelos GARCH, EGARCH, Volatilidad Estocástica, Retornos
Bursátiles, Retornos Cambiarios, Estimación Bayesiana.
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Stock and Forex Markets1

Willy Alanya Gabriel Rodríguez2

The University of Warwick Pontificia Universidad Católica del Perú

1 Introduction

Financial returns reflect the uncertain behavior that results from the investment decisions of eco-
nomic agents, speculations, and the domestic and international environment. Financial series, espe-
cially stock and foreign exchange (Forex) market returns, are characterized by their high volatility
which displays a clustering dynamic over time. Thus, there are periods in which they are very low
(greater stability) and/or high (times of high uncertainty). Modeling financial series entails the
incorporation of the dynamics of the volatility into the structure of a time series model. In the
literature, this type of series was first modeled by Engle (1982) using an autoregressive conditional
heteroskedasticity (ARCH) model applied to the volatility of inflation in the United Kingdom.
Bollerslev (1986) notes that the model proposed by Engle (1982) does not capture the persis-
tent dynamic of conditional volatility, even when a large number of lags are used, and develops a
generalized autoregressive conditional heteroskedasticity (GARCH) model. On the other hand, the
literature has found evidence that the returns of the financial series follow asymmetric patterns with
their volatilities. For example, French et al. (1987) find that an unexpected shock in the returns
is negatively related to the impact that this shock has on the volatility. Along these lines, Nelson
(1991) proposes an exponential GARCH (EGARCH) model on the logs of the conditional variance,
which consists of incorporating an asymmetry component into the returns and the variance. These
so-called leverage effects occur because many financial series are more volatile in response to bad
news, which affects the expectations of financial market returns more than would be the case with
good news.

Moreover, in Glosten et al. (1993) the volatility asymmetries are studied based on the specifi-
cations of Nelson (1991), but incorporating seasonal effects. The authors show that when the data
are of higher frequency, the estimated persistence of the estimated volatility is greater. Glosten et
al. (1993) apply this model to the Center for Research in Security Prices (CRSP) index of the U.S.
market and find that the effects on volatility depend on the type of shock; if it is positive, volatility
reduces, while the opposite occurs in the case of a negative shock. Engle and Ng (1993) employ
the asymmetric GARCH model proposed by Nelson (1991) to study the news impact curve; that
is, how diverse shocks in the returns affect conditional volatility. Through statistical tests on the
asymmetry parameter, the authors conclude that negative shocks generate greater volatility than
positive shocks for the stock market of Japan3.

1We thank useful comments of Michael Pitt (The University of Warwick), Paul Castillo (Central Reserve Bank of
Peru) and Jorge Rojas (PUCP). This research was completed while Alanya was at the Master Program in Economics,
The University of Warwick. Any remaining errors are our responsibility.

2Address for Correspondence: Gabriel Rodríguez, Full Professor, Department of Economics, Pontificia Uni-
versidad Católica del Perú, 1801 Universitaria Avenue, Telephone: +511-626-2000 (4998), E-Mail Address:
gabriel.rodriguez@pucp.edu.pe.

3The advance in the literature on various models or extensions of the GARCH and EGARCH model is extensive.
Certain models have included long-memory characteristics, while others have introduced the possibility of a different
order of powers in the variance. For a full and detailed review of the references, see Degiannakis and Xekalaki (2004),
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On the other hand, in the literature on financial series, another group of models known as
stochastic volatility (SV) has been developed. These models add greater flexibility to the volatility
equation, as they factor in two terms of error: one for the returns equation, and another for the
volatility equation, with which the fluctuating behavior of the volatility modeled is captured. These
models were initially proposed in the literature, for the continuous case, by Hull and White (1987),
who model the price of an European market option. In turn, the discrete version is developed
in Jacquier et al. (1994), and Harvey et al. (1994). The SV models do not have an analytical
representation for the maximum likelihood function as it involves latent variables (the volatilities)
that do not render feasible the integration of variables of the models. For this reason, Kim et
al. (1998) develop a Bayesian approach that overcomes this limitation, which is the most effi cient
compared with other algorithms, such as the method of moments proposed by Wiggins (1987) and
the estimation of maximum likelihood of Harvey et al. (1994).

Kim et al. (1998) develop the SV model by implementing Bayesian Monte Carlo Markov Chain
(MCMC) methods that improve the effi ciency in the estimation of the parameters. The effi ciency
criteria consists of developing the lowest number of iterations necessary to establish the significant
estimation of the parameters. Moreover, Kim et al. (1998) conduct a study of the autocorrelations
(ACF) of the samples to determine their degree of randomness. In turn, they determine a better
approximation to the term of error of the model that displays the characteristics of a χ2 distribution.
Moreover, in Kim et al. (1998) a range of statistical tests are applied to compare the fit of the
SV model against the GARCH model. The tests are based on the criteria of the logarithm of the
likelihood, simulation tests on estimated parameters, and a final test that factors in the information
on the prior and posterior distributions of the logarithm of likelihood of the model.

For the Peruvian case, the main characteristics of the variables employed in this research are
studied in Humala and Rodríguez (2013). The authors study the presence of non-Normal behavior
in a statistical sense, such as asymmetries, elevated kurtosis, and clusters in the volatility, and
conduct a study based on dynamic correlations on the moments of the series. In Alanya and
Rodríguez (2014), an SV canonical model for the Peruvian stock and Forex markets is estimated;
the periods of volatility of the stock and Forex markets in the Peruvian economy are identified; and
the SV models with Normal errors are compared with the GARCH models by assuming Normal and
t-Student distributions, respectively. The results indicate that the SV model exceeds the GARCH-
N model, but not the specification of the GARCH-t, though it achieves a close fit. In the literature
on the SV models, a similar model to EGARCH is developed that incorporates the asymmetries
between the returns and the variance. For example, Yu (2005) studies a SV model and asymmetries
that compare the results of the Bayesian algorithm using continuous and discrete approaches.

This study estimates the SV models proposed in Omori et al. (2007), which consists of the
SV canonical model similar to the EGARCH specification; that is, it incorporates asymmetries
between the returns and the volatility. Nonetheless, Omori et al. (2007) develop a methodology
that improves the effi ciency and speed of the parameter estimation, which consists of a combination
of Normal distributions for the approximation of the term of error generated in the linearization
of the SV model. Moreover, the model with and without asymmetries is extended to the case of
t-Student distributions, for a log-Normal distribution and a combination of both4. These models
are applied to the series of returns for the TOPIX index of Tokyo. As well as developing a new

and Bedón and Rodríguez (2015), as well as the references cited in that paper.
4 In this study we only employ the specifications of the asymmetric SV model for Normal and t-Student errors,

denoted as ASV-N and ASV-t, respectively.
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algorithm for the best estimation of the SV models, Omori et al. (2007) devise a new technique for
the filtered estimations of the volatilities. The purpose of these methods is to assess the likelihood
function of the SV models, and conduct forecasts on that basis. A first approximation is made in
Gordon et al. (1993) who develop a particle filter based on random samples for the state vector in
the state-space representation; the use of this algorithm is expanded for the non-linear case, and
using errors that do not assume Normality.

Another filter is that of Pitt and Shephard (1999), known as the auxiliary particle filter. More-
over, Kim et al. (1998) take this filter as a basis and develop a variation related to the weighting
employed when producing the samples for the filters. In Omori et al. (2007), the auxiliary parti-
cle filter is used on the state-space representation of the SV model that incorporates asymmetries
between the returns and the variance.

This study models the volatility of the daily stock and Forex market returns for the period
from January 5, 1998 to December 30, 2011, incorporating extensions to the canonical SV model
estimated in Alanya and Rodríguez (2014). With this aim, various SV models are employed, as well
as GARCH models, using the Bayesian methods developed in Omori et al. (2007) and Nakajima
(2012).

The Bayesian MCMC algorithms are the most effi cient methods in terms of convergence to
the parameters; see Jaquier et al. (1994). Moreover, we contrast the fit to the data of the SV
and GARCH models typically employed in the literature on financial series, using the marginal
likelihood criterion of Chib (1995).

In this study, the following specifications are used for the SV and the autoregressive conditional
heteroskedasticity models: (i) an SV model with Normal errors (canonical or SV-N model); (ii) an
SV model with distributed errors following a t—Student distribution (SV-t); and (ii) an SV model
that incorporates the existing relationship between the returns and the variance (asymmetry) in
response to a shock in the volatility with Normal and t-Student errors, respectively (ASV-N and
ASV-t). The GARCH models that are used have similar characteristics: (i) GARCH-N, GARCH-t;
(ii) EGARCH-N and EGARCH-t. Likewise, conditional heteroskedasticity models are estimated
by employing the same specifications through Bayesian algorithms. With respect to the estimated
asymmetry parameters in the stock market, this has a negative sign in both specifications and under
Normal and t-Student errors, which is characteristic for these markets, as a negative shock in this
market generates more volatility than a positive shock. However, in the Forex market the parameter
had a positive sign, which means that a depreciation shock (positive) in the exchange rate generates
greater volatility than an appreciation shock (negative); thus, the Central Reserve Bank of Peru
(BCRP) faces relatively major diffi culties in its intention of smoothing Forex volatility. The model
with the best fit in both returns is the ASV model with Normal errors. The stock market returns
have greater periods of volatility; however, both markets react to shocks in the economy, as they
display similar patterns and have a significant correlation for the sample period studied.

The paper is structured as follows. The next section briefly outlines the GARCH, EGARCH,
SV and ASV models with brief remarks about the algorithm of estimation; Section 3 describes the
data and provides an analysis of the results; Section 4 deals with conclusions.

2 The Models and The Algorithm of Estimation

This Section outlines the models used, as well as the respective algorithm. In order to save space,
the GARCH (with N and t-Student errors) models are not presented as they are standard and
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appear in most econometrics textbooks. In any case, the description may be found in Alanya and
Rodríguez (2014).

2.1 The EGARCH Model

This model, proposed by Nelson (1991), incorporates into the GARCH model an asymmetry com-
ponent between the mean and variance of the series analyzed. The EGARCH model is robust to
negative values in the volatility due to its exponential form. Thus, the EGARCH (1,1) model takes
into account the following specification with Normal errors:

yt = σtεt, (1)

log σ2
t = ω + β log σ2

t−1 + θ(
yt−1

σt−1
) + α(

∣∣∣∣ yt−1

σt−1

∣∣∣∣−
√

2

π
),

εt ∼ N (0, 1),

where β is the parameter that represents the persistence of the logarithm of the conditional volatil-
ity, α captures the magnitude of a shock in the volatility on the logarithm of the conditional
variance, and ω is the intercept or level of the model. The peculiarity of the EGARCH model in
relation to the GARCH is the asymmetry parameter θ.When this parameter takes negative values,
it means that a negative shock on the volatility will generate a future increase in volatility. On
the other hand, if the parameter is positive this shock generates a lower future volatility, with the
existing asymmetry appreciating in response to a shock in the volatility.

The EGARCH model with t-Student (EGARCH-t) errors is specified:

yt =
√
λtσtεt, (2)

log σ2
t = ω + β log σ2

t−1 + θ(
yt−1

σt−1
) + α(

∣∣∣∣ yt−1

σt−1

∣∣∣∣− ζ),

λ−1
t ∼ Gamma (ν/2, ν/2),

εt ∼ N (0, 1),

where the component
√
λtσt characterizes a t-Student distribution with ν degrees of freedom.

Moreover, the term ζ represents the expected value of a random variable z that in turn follows a
t-Student distribution with ν degrees of freedom.

2.2 The SV and ASV Models

The literature on SV models specifies volatility as a latent process. This allows the volatility to be
represented in space-state form in which an inherent error or innovation is assumed. The innovations
of the return and variance are assumed as i.i.id. Normal distributions. Accordingly, the discrete
version of the canonical SV model is:
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yt =
√
λt exp(ht/2)εt, (3)

ht+1 = µ+ φ(ht − µ) + ηt,

β = exp(µ/2),

λ−1
t ∼ Gamma (ν/2, ν/2), εt|σ

ηt|σ

 ∼ i.i.d. N

 0

0

 ,

 1 0

0 σ2

 ,
h0 ∼ N

[
µ,

σ2

1− φ2

]
,

where ht is the volatility of the return in time t and it is assumed that ht follows a stationary
process AR(1). Note that the specification in (3) collapses to an SV-N model when λt = 1. On the
other hand, the parameter σ represents the volatility of the SV model, which is indicative of the
fluctuations of cycles of volatility in the returns. The parameter β represents a factor of scale for
the equation of variance, as it depends on the level term µ which is understood as the long-term
average process. Moreover, the SV model has an initial condition h0 with a distribution governed
by its unconditional moments. In the case of a SV model with t-Student errors, the term

√
λtεt of

the equation for the returns will be distributed under a t-Student with ν degrees of freedom.
The ASV model captures the asymmetries between the returns and the variance as in the

EGARCH model of Nelson (1991). The discrete version of the model is presented in Harvey and
Shephard (1996) where the main difference from the canonical model is the incorporation of the
terms of errors of the returns and variance equations. The SV model with asymmetries is

yt =
√
λt exp(ht/2)εt, (4)

ht+1 = µ+ φ(ht − µ) + ηt,

β = exp(µ/2),

λ−1
t ∼ Gamma(ν/2, ν/2), εt|σ

ηt|σ

 ∼ i.i.d. N

 0

0

 ,

 1 ρσ

ρσ σ2

 ,
h0 ∼

[
µ,

σ2

1− φ2

]
,

whereby the only parameter that differentiates this asymmetric model from the previous SV model
is the presence of the parameter ρ; that is, the relationship between the shocks that characterize
the returns and the volatility. When this coeffi cient is less than zero, then a negative shock in the
returns generates higher future volatility, and analogically a positive shock implies lower volatility.
Likewise, in the case of the SV model without asymmetries, the term

√
λtεt characterizes the returns

under a t-Student distribution with ν degrees of freedom, with which the distribution λt follows an
Inverse Gamma distribution. Incorporation of the asymmetric effect and a t-Student error leads to
methodological complications in the estimation of the canonical SV model analyzed in Kim et al.
(1998).
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2.3 Bayesian Estimation of EGARCH Models

The estimation of the GARCH-N and GARCH-t models under these algorithms for the Peruvian
financial returns appear in Alanya and Rodríguez (2014). The intention of estimating these models
using Bayesian statistics is to render comparable the GARCH and the SV models by making use
of the marginal likelihood criteria of Chib (1995). Following the algorithm employed by Nakajima
(2012), we denote the vector ϑ = (ω, β, α, θ) of the parameters of level ω, of persistence β, to the
moving averages component α and the asymmetry parameter θ of the EGARCH model. Moreover,
in the case of the EGACRH-t model, the degrees of freedom parameter is represented by ν. In this
way, the Bayesian algorithm is summarized as follows: (i) initial values are given to the parameters
(ϑ, ν); (ii) samples of ϑ|λ, ν, y are obtained; (iii) samples of λ|ϑ, ν, y are obtained; (iv) samples of
ν|λ are obtained; and (v) step (ii) is repeated.

In step (ii) the samples of the vector of parameters ϑ|λ, ν are obtained from the conditional
distribution π(ϑ|λ, ν) using the Metropolis-Hastings algorithm, which is approximated using a
Normal distribution. The proposed distribution for a candidate ϑ∗ is N (µ∗,Σ∗) where: µ∗ =

ϑ∗ + Σ∗
∂ log π(ϑ|λ,ν,y)

∂ϑ |ϑ=ϑ∗ and Σ−1
∗ = −∂ log π(ϑ|λ,ν,y)

∂ϑ∂ϑ′
|ϑ=ϑ∗ . Both moments of the distribution are

obtained by approximating the conditional distribution π(ϑ|λ, ν, y) around the candidate ϑ∗ through
a second-order Taylor series expansion.

In the EGARCH-t model, the equation that characterizes log π(ϑ|λ, ν, y) is:

log π(ϑ|λ, ν, y) = log π(ω) + log π(β) + log π(α) +
n∑
t=1

−1

2
log(λtσ

2
t )−

y2
t

2λtσ2
t

,

σ2
t = exp[ω + β log σ2

t−1 + θ

(
yt−1

σt−1

)
+ α(

∣∣∣∣ yt−1

σt−1

∣∣∣∣− ζ)].

The candidate ϑ∗ is accepted under a probability: Pr(ϑ0, ϑ
∗) = min{π(ϑ∗|λ,ν,y)q(ϑ0|λ,ν,y)

π(ϑ0|λ,ν,y)q(ϑ∗|λ,ν,y) , 1},
and ϑ0 represents the last candidate accepted. In step (iii) the samples for the λ come from

the following conditional distribution: π(λt|ϑ, ν, y) ∝ λ
− ν
2
−1

t exp{ ν
2λt
} 1√

λtσ2t
exp{− y2t

2λtσ2t
}, and the

Metropolis Hastings algorithm is also used, where the candidate samples come from an Inverse-
Gamma distribution (ν/2, ν/2). Finally, in step (iv) samples for (v) are generated using: π(ν|λ) ∝

π(ν)
( ν
2

)
nν
2

Γ( ν
2

)n

n∏
t=1

(λ
− ν
2

t ){exp(−ν
2

n∑
t=1

λ−1
t )}, and the estimation of this parameter is resolved using the

Metropolis-Hastings algorithm once again.

2.4 Bayesian Estimation of the SV and ASV Models

In Omori et al. (2007) an effi cient algorithm is developed for the estimation of the SV models in
the presence of asymmetries and assuming various types of error in the returns. This algorithm
is based on the approach of Kim et al. (1998), which approximates the error by transforming
the distribution of the SV model with a combination of Normal distributions, but also generates
re-weightings on the results to minimize the previously obtained residuals. The SV model, using
the notation of Omori et al. (2007), can be represented as follows:
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 y∗t

ht+1

 =

 ht

µ+ φ(ht − µ)

+

 ε∗t

ηt

 ,
such that, y∗t = log y2

t = h+ε∗t and ε
∗
t = log(ε2t ), because of which yt = dt exp(y∗t /2), with dt being a

composition of dummy variables that capture the asymmetric affect between returns and variance
errors: dt = 1(εt ≥ 0)− 1(εt < 0).

Following Omori et al. (2007), for the approximation of the term ε∗t , ten (10) Normal distribu-
tions are employed, unlike the seven approximations suggested in Kim et al. (1998). The authors
show that this mixed distribution fits better in relative terms to an χ2 distribution when, for the
term of error ε∗t , the logarithm functions log(ε2t ) and square root

√
ε2t are factored in. We denote

the index that refers to one of the Normal distributions that comprise the mixed distribution as sn.
Thus, the algorithm for the estimation of the ASV-t model is summarized as follows: (i) we give
the initial values to sn, hn, µ, ϑ where ϑ = (φ, ρ, σ); (ii) we generate samples for sn|dn, hn, µ, ϑ, y∗n;
(iii) we generate samples for ϑ|dn, sn, y∗n; (iv) we generate samples for hn, µ|dn, sn, ϑ, y∗n; (v) we
obtain samples for λ|hn, µ, dn, sn, ϑ, y∗n; and (vi) we obtain samples for ν|λ. In step (ii) we get the
following conditional distribution:

π(st = j|y∗n, dn, hn, µ, ϑ)

∝ π(st = j|ε∗t , ηt, dt, µ, ϑ

∝ Pr(st = j)υ−1
j exp

{
−(ε∗t −mj)

2

2υj
− [ηt − dtρ exp(mj/2) {aj + bj(ε

∗
t −mj)}]2

σ2(1− ρ2)

}
,

where Pr(st = j) follows a discrete distribution, in which samples are generated under the in-
verse distribution method. For step (iii) the samples generated for ϑ follow the distribution:
g(ϑ|y∗n, dn, sn) ∝ g(y∗n|dn, sn, ϑ)π(ϑ).

Firstly, the distribution for g(y∗n| dn, sn, ϑ) is obtained on applying the Kalman filter to the
following equations:


y∗t

ht+1

µ̃t+1

 =


ht

µ̃t + φ(ht − µ̃)

µ̃t

+


ε∗t

ηt

0

 ,
 h1

µ̃1

 ∼ N

 h0

µ0

 ,

 σ2

(1−φ2)
+ σ2

0 σ2
0

σ2
0 σ2

0

 .
This state-space representation of the SV model allows estimation using the Kalman filter, where
µ̃1 = µ̃2 = ... = µ̃n = µ. Subsequently, the joint distribution g(ϑ|y∗n, dn, sn) is approximated
using the Metropolis-Hastings algorithm, namely, the estimated parameters denoted as ϑ̂. Fi-
nally, γ∗ candidates are generated in accordance with a truncated normal distribution TNR(ϑ̂,

Σ∗), with: Σ−1
∗ = −∂2 log g(y∗n|dn,sn,ϑ)π(ϑ)

∂ϑ∂ϑ2
|
ϑ=ϑ̂

, and the truncated area is represented by R ={
γ : |φ| < 1, σ2 > 0, |ρ| < 1

}
. This candidate is accepted or rejected based on a probability by
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following the Metropolis Hastings algorithm. In step (iv) the sample of the latent volatilities
in moment n and the level parameter hn, µ|dn, sn, ϑ, y∗n is carried out using the filter developed
by Koopman et al. (1996), with which latent parameters can be estimated using the smoothed
Gaussian simulator. To sample the parameter associated with the t-Student distribution λ in step
(v), the following conditional distribution is employed:

π(λ|hn, µ, dn, sn, ϑ, y∗n) ∝ λ
− ν
2
−1

t exp

{
− ν

2λt
−

(log λt − µλt)2

2σ2
λt

}
,

where µλt and σ
2
λt
are obtained from the results of the state-space representation determined in the

previous step and whose analytical representation is set out in Nakajima and Omori (2009). Then,
through the Metropolis-Hastings algorithm, the candidates derived from the prior distribution of
the λ−1

t parameter are obtained. Finally, the conditional distribution for the degrees of freedom ν
from the previous step of the algorithm is given by:

π(ν|λ) ∝ π(ν)
(ν2 )

nν
2

Γ(ν2 )n

n∏
t=1

(λ
− ν
2

t )

{
exp(−ν

2

n∑
t=1

λ−1
t )

}
.

As with the algorithm of the EGARCH models, the samples of this parameter are resolved
through an acceptance and rejection procedure for the candidates and the use of the Metropolis-
Hastings algorithm.

2.5 Filtered Estimation of Stochastic Volatility

The particle filter proposed by Omori et al. (2007) is employed to estimate the filtered volatilities
of the model. The objective of this filter is to approximate the likelihood function of the SV
model using this sequential algorithm. Thus, through these approximations the estimation of the
logarithm of likelihood of the models is obtained.

The auxiliary particle filter for the ASV-N model under the state-space representation of the
SV model is characterized by the following equations:

f(yt|ht) =
1√
2π

exp

[
−(ht − y2

t exp(−ht))
2

]
which is the density or measurement equation, while:

f(ht+1|yt, ht, µ, θ) =
1√

2π(1− ρ2)σ
exp

[
−

(ht+1 − µt+1)2

2(1− ρ2)σ

]
,

µt+1 = µ+ φ(ht − µ) + σρ exp(−ht/2)yt.

is the equation of evolution or transition. The steps are as follows: (i) for time t = 0 of the
algorithm, the volatilities hit+1, h

i
t are generated for i = 1, 2, ..., I based on the unconditional dis-

tribution; (ii) J samples are generated for the volatilities hit and hit+1 through the function of
importance g(ht+1, ht|yt+1, µ, ϑ) : g(ht+1, h

i
t|yt+1, µ, ϑ) ∝ f(ht+1|yt, hit, µ, ϑ)g(hit|yt+1, µ, ϑ), where

g(hit|yt+1, µ, ϑ) =
f(yt+1|µit+1)f̂(hit|yt,µ,ϑ)∑I
j=1 f(yt+1|µjt+1)f̂(hjt |yt,µ,ϑ)

and f(yt+1|µjt+1) are obtained by evaluating this dis-

tribution in the measurement equation of the state-space representation. Moreover, f̂(hit|yt, µ, θ)
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is a discrete uniform distribution that approximates f(hit|yt, µ, ϑ) from which samples are gener-
ated for f(ht+1|yt, ht, µ, ϑ). Thus, for each i, J components wj are generated in accordance with

wj =
f(yt+1|hjt+1)f̂(hit|yt,µ,ϑ)

g(hit|yt+1,µ,ϑ)
, the following results are kept: w̄t+1 = 1

IJ

∑J
j=1

∑I
i=1wi,j ; (iii) a re-

sample is generated using as probabilities the results stored in wj for each i, with which the final
samples I are obtained; (iv) step (ii) is resumed, and the algorithm is applied to the following
period. Under this algorithm, Omori et al. (2007) show that if I, J → ∞ :

∑n
t=1 log(w̄t) →∑n

t=1 log f(yt|y1, ..., yt−1, µ, ϑ), where
∑n

t=1 log(w̄t) is a consistent estimator of the logarithm of
likelihood, which is the main input for calculating the marginal likelihood of Chib (1995).

3 Empirical Results

In this Section the results of the parameter estimations for the models EGARCH-N, EGARCH-t,
SV-N, SV-t, ASV-N and ASV-t are presented. Moreover, to assess the fit of the model to the
data in both methodologies, the marginal likelihood criteria of Chib (1995) is employed5. In the
estimation of the parameters of all models, 15000 iterations are employed, the first 10000 having
been discarded.

The data used in this study are the stock market returns calculated as the first differences
in the General Index of the Lima Stock Exchange (IGBVL) and the Forex rate returns obtained
from the differences in the nominal purchase exchange rate published by Peru’s Superintendency
of Banking, Insurance, and Pension Fund Administrators (SBS). Thus, the returns are calculated
using the following formula: yt = ln(Pt) − ln(Pt−1), where Pt is the respective market index or
exchange rate, respectively. The returns are daily and cover the period from January 5, 1998
to December 30, 2011 for both series. In 2011, the Peruvian stock market posted a fall in its
index of around 17%, while market capitalization dropped by 24.4 % from 2010, explained by
greater uncertainty in the global markets and the general election process that year. However, the
trading volume totalled 7, 817 million Soles and more transactions were carried out, worth 365, 202.
The stock market returns are shown in Figure 1a. Moreover, Figure 1b shows the Forex returns,
and clustering can be appreciated right across the sample, especially in the period of the 2008
international financial crisis.

The main statistics on both financial returns and volatilities are shown in Table 1. The first
moment of the returns approximates the value of zero, implying that there are as many observations
with positive results as there are negatives, which is an indicator of high volatility and erratic
behavior in the series. Moreover, the standard deviation of the stock market returns is 0.015
greater than the standard deviation of the Forex returns 0.002, from which it is inferred that there
was greater fluctuation in the stock market returns. Moreover, the kurtosis shows expected results
for financial returns, which are characterized for having data very far from the mean. As for the
stock market returns, the kurtosis is 13.188 while for the foreign exchange returns, it is 15.635. It
should be stated that despite the returns having a mean close to zero, for the estimations of all
models in this study, both series are corrected for the mean, and our study is centered on explaining
the dynamic of the second moment of the returns.

Moreover, when the models are estimated using Bayesian algorithms, the Geweke and inef-
ficiency indices are determined. The ineffi ciency of the estimated parameters is calculated as a

5 In the case of the GARCH-N and GARCH-t models, only the results of this test are presented. However, the
results of the estimation of the algorithm of Gilks and Wild (1992) are reported in Alanya and Rodríguez (2014).
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function of the ACF of the samples generated: 1 + 2
∑∞

s=1 ρs, where ρs represents the autocorrela-
tion of the samples generated in the lag s.

3.1 The EGARCH Models

In order to save space the GARCH (Normal and Student-t) are not presented here, but can be found
in Alanya and Rodríguez (2014). However, they are considered in the selection of the models. To
carry out the Bayesian algorithms, the prior distributions for the EGARCH models of Nakajima
et al. (2012) are used. The parameters follow the following prior distributions: ω ∼ N(0, 1),
β ∼ Beta(8, 1), α ∼ N(0, 1), θ ∼ N(0, 1) and ν ∼ Gamma(16, 0.8). The results of the parameter
estimations of the EGARCH-N and EGARCH-t models for the stock market returns are shown in
Table 2. The persistence β in the conditional volatility for both models is high, which indicates that
a shock in the estimated conditional variance will have a transitory but long-lasting effect. The
estimated levels of persistence are 0.947 and 0.956, slightly higher in the case of the EGARCH-t
model. The estimated values suggest that in response to a conditional volatility shock, we will get an
effect of 14 and 17 days, respectively. Moreover, the parameter α, which reflects the symmetric effect
or magnitude of the shock on the volatility, is 0.403 and 0.310 for the EGARCH-N and EGARCH-t
models, respectively. This symmetric effect is greater in the EGARCH-N model because for the
EGARCH-t model, part of this symmetric effect is explained by the non-Normal error.

The estimated EGARCH models for the stock market returns show that there is an asymmetric
relationship between the returns and the variance. Indeed, the parameter θ for the EGARCH-N
model is −0.037 and −0.021 for the EGARCH-t model. This implies that when a negative shock
or an event that concerns the stock market occurs, the volatility generated is greater than when
there is a positive shock in the economy. Such asymmetric behavior in stock market returns has
been observed in the literature for various series. However, the asymmetric effects are not high6.

On the other hand, the estimated level parameter ω in both models is −0.45 on average. With
respect to the convergence criteria, the Geweke and ineffi ciency indices show us that the algorithm
employed generates Markov chains rapidly, so a significant estimation is arrived at. These results
can be seen in the paths of the iterations and their autocorrelations in Figures 2a and 2b, which
establish the randomness in the iterations realized and the posterior densities. The parameter that
characterizes the t-Student distribution in the EGARCH-t model, ν, has a mean of 7.136, which
implies that factoring this type of distribution into the module captures the information on atypical
observations of the model, in the framework of the conditional heteroskedasticity models. Note that
the autocorrelation function (ACF) of the parameter ν decays slowly.

In the case of the Forex returns, the results of the estimation and the convergence criteria are
found in Table 2, and display high persistence β in response to a shock in the volatility, taking
a value of 0.96 in both models, which is equivalent to an an half life of 18 days. As regards the
parameter α that captures the GARCH effect, the results give an estimate of 0.399 in the model
with Normal errors and 0.336 in the model that assumes a t-Student, as this distribution affects
the expected value of a shock in the volatility ζ. In turn, the asymmetric effect, captured in the
parameter θ, has a mean in the posterior density of 0.064 for the case of EGARCH-N, and of 0.045
for the EGARCH-t model. These results suggest that a positive shock on the foreign exchange
returns in this market generates slightly greater volatility than is the case for a negative shock.
In consequence, exchange rate depreciation is more sensitive to volatility than appreciation. This

6Similar results are found in Lengua et al. (2015) using a more complicated approach.
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means that though the Central Reserve Bank of Peru (BCRP) controls foreign exchange volatility
with its floating exchange rate and interventionist regime, the issuing entity faces greater diffi culties
in its objective of smoothing the volatility when there is a currency depreciation, as compared to
when appreciations occur.

With respect to estimations of the level parameter ω, this has a mean of −0.386 for the
EGARCH-N model and −0.542 for the EGARCH-t model. Moreover, the degrees of freedom
parameter of this model is estimated at 4.510, so the EGARCH-t model captures, to a large ex-
tent, the new distribution with fat tails in the data. With respect to ineffi ciency levels, these are
low in most of the parameters and the posterior densities are well-formed around the mean of the
distribution. The paths of the iterations, the correlations, and the densities of the parameters of
the EGARCH-N and EGARCH-t models are shown in Figures 3a and 3b. The ACF of parameter
ν shows better behavior.

3.2 The SV and ASV Models

Table 3 shows the results of the estimation of the four SV models for the stock and Forex returns,
for which the posterior distributions established in Nakajima (2012) are used. These distributions
are: θ+1

2 ∼ Beta (20, 1.5), σ2 ∼ Inverse−Gamma (2.5, 0.025), µ ∼ N(−10, 1), ρ+1
2 ∼ Beta(1, 1),

ν ∼ Inverse−Gamma (16, 0.8). The persistence of the stochastic volatility φ is high for all models,
fluctuating around 0.96 in all cases, with the value estimated for asymmetric models being relatively
low. Thus, a shock in the stochastic volatility, considering that our data are daily and regardless of
the asymmetry, will have a half life of 19 days for the models that assume Normality, and 22 days
for the models with errors distributed with a t-Student.

The parameter that measures the variability of the stochastic volatility σ fluctuates around 0.29
in the models with Normal distribution, and 0.26 for models with t-Student distribution, in the
case of the stock market returns. Conversely, for the case of the Forex returns, this parameter is
estimated at 0.31 for the SV-N and ASV-N models, and at 0.28 for the SV-t and ASV-t models,
which suggests that the stochastic volatility has longer periods of uncertainty for the stock market
returns, and this is consistent with the interventionist exchange rate policy of the BCRP.

Similarly, Table 3 shows the results of the estimation of the parameter that measures the
asymmetry ρ between the returns and the variance in the ASV-N and ASVt models, with estimated
values of −0.081 and −0.091, respectively. These results are consistent with the estimates of the
EGARCH-N and EGARCH-t models. This means that a negative shock in the equation of the
returns, because of the negative covariance between the shocks in the returns and the volatility
equations, generates greater volatility than when there is a positive shock in the returns. This fact
is recurrent in the stock markets, in which great uncertainty is generated when there is a fall in
the respective indices on account of the shocks faced by the local and world economy. However
Table 3 shows that for the stock market the parameter of asymmetry has a confidence interval
including zero or positive values. It implies the possibility that asymmetric effects are inexistent
in this market. Tha results for the ASV-N and aSV-t models indicate the same conclusion. In
comparison with the EGARCH models, the existence of asymmetric effects is weakly. The result is
interesting because Lengua Lafosse et al. (2015) find similar results for the Latin American stock
markets using a more sophisticated model belonging to the ASV family models.

For the SV-t and ASV-t models, the estimated degrees of freedom are 24.345 and 23.428,
respectively. This implies that incorporating a t-Student distribution into the SV model and ASV
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into the stock market data does not provide more information on the behavior of the series, as a
high number of degrees of freedom converge on a model with Normal distribution. Thus, with the
exception of the parameter of the degrees of freedom7, the estimates display low levels of inference
and the iterations prove to be random, as shown in Figures 4a, 4b, 5a, and 5b.

For the Forex returns, the results of the Bayesian estimation of the SV and ASV models are
shown in Table 3, where the standard MCMC deviation, the confidence interval, and the ineffi ciency
criteria can also be appreciated. Thus, the estimated persistence φ of the stochastic volatility is
high for all models. For the SV-N and ASV-t specifications, a shock in the mean equation will
have an effect of up to 26 days. For the SVt model, this effect will last approximately 31 days,
while in the ASV-t model the effect is extended over 24 periods. Moreover, the parameter that
measures the asymmetry ρ for the foreign exchange returns is 0.210 for the ASV-N model and
0.223 in the ASV-t model, implying that negative shocks in the stochastic volatility generate lower
volatility than the positive shocks. These results coincide with the predictions of the EGARCH
models estimated earlier, though their estimates are greater in magnitude. Thus, exchange rate
depreciation affects the Forex stochastic volatility more than appreciation. However, the results
show that the interventions of the issuing entity are more sensitive to a lower supply of dollars
and/or increases in demand for foreign currency.

The estimated values of the degrees of freedom of the t-Student distribution ν are high, with a
posterior mean of 27.050 and 29.527 in the SVt and ASVt models, which suggests that under the
stochastic volatilities approach, a model assuming Normality is suffi cient to effectively capture the
volatility cycles of the Forex returns. On the other hand, in Figures 6a, 6b, 7a, and 7b the paths of
the 5000 iterations performed for each of the four volatility models are shown; in each of the cases
except for degrees of freedom, the randomness of the iterations and the posterior densities estimated
around the mean are appreciated, which suggest an effi cient estimation of the parameters.

3.3 Chib’s (1995) Marginal Likelihood

The marginal likelihood of Chib (1995) takes into account the prior information on the distribu-
tions of the parameters, the posterior densities, or the final distributions of the parameters, and
incorporates both results into the logarithm of likelihood of each of the models. Thus, the formal
definition of the marginal likelihood is VM = log f(y|M, θ∗) + log f(θ∗) − log f(θ∗|M,y), where
the first term of the equation is the logarithm of the maximum likelihood of the model M , the
term log f(θ∗) is the logarithm of the prior distributions assessed at the means of the posterior
distributions θ∗ and the final term log f(θ∗|M,y) is the logarithm of the posterior distributions also
assessed at the mean, which is obtained by evaluating the density through a Gaussian kernel.

The results of this test for the stock market and the Forex returns are shown in Table 4. In
the case of the stock market returns, the SV models have a better fit than the GARCH models
for each of the specifications adopted. The SV model that incorporates asymmetries possesses the
greatest marginal likelihood. On the other hand, the EGARCH model has the best fit among the
conditional heteroskedasticity models. Moreover, utilizing an EGARCH-t results in a better fit to
the data, which is expressed in the lower estimated values of the degrees of freedom and in greater
marginal likelihood. In the case of the SV models, incorporating t-Student distribution does not
provide a better fit among the models of this type, which is reflected in the high degrees of freedom
estimated.

7However, the results are robust when the parameters are estimated with a larger number of iterations.
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With respect to the series of Forex returns considering the models of conditional heteroskedas-
ticity, the EGARCH-t model has the best fit, as it significantly estimates the degrees of freedom
and the asymmetric response to shocks in the conditional volatility. In the case of the SV models,
the specification with the best results is the ASV-N model. In light of the estimations that report
a high number of degrees of freedom, a model that assumes Normality in these returns is the most
useful.

Thus, for the stock and the Forex markets returns, the ASV model has a better fit among the
models analyzed. In particular, for the stock rate series, all stochastic volatility models fit better to
the data than the EGARCH models. In the case of the series of Forex, the EGARCH-t model has
a better fit than the SV, ASV-t and SV-t models; however, these specifications considerably exceed
the other GARCH models. In general, according to the marginal likelihood, the SV performs well.

3.4 Explaining the Stochastic Volatilities

Figures 8a and 8b show the smoothed volatilities for all models of stock and Forex market returns,
respectively. The smoothed volatilities are obtained using a mean of the realizations of the im-
plicit volatilities within the estimated samples:

∑H
t=1 ht/H, with H being the number of iterations

performed. It can be noted that the volatilities follow the same pattern in all the SV models.
In particular, the ASV model accentuates peaks in the volatilities in the sample studied for both
returns.

On the other hand, it can be appreciated that the stochastic volatility of the Peruvian stock
market and Forex returns was affected by the international crises of 1997 and 1999, reflected in high
volatility, due to the economic problems in Asia and Russia. Likewise, the financial crisis in the
United States has had serious repercussions on the behavior of the volatility of the stock and Forex
markets. Moreover, it can also be appreciated that in 2010 there were no major shocks in these
markets. However, in 2011 the crisis was accentuated in the countries of the European Community
and North America, causing uncertainty in the markets of emerging economies such as Peru.

Moreover, Figures 9a and 9b provide a comparison between filtered8 and smoothed volatility
for the ASV model, which results in a better fit to the data for both returns. It can be seen
that the filtered procedure that estimates volatility period-by-period evidences certain peaks in the
estimated volatility, while the smoothed volatility, on taking the information from all the samples
generated, displays smoothed behavior.

On comparing the evolution of the volatilities, it can be observed that the volatilities, when
affected by the same shocks on the economy, show a similar dynamic in time. Moreover, the
coeffi cient of correlation between the stochastic volatilities of the returns is 0.45, which indicates
similar propagation of the uncertainty in both markets. As is shown in our estimations of the ASV
models, the parameter that measures the mean of the volatility in the long term β for the stock
market returns is 0.0103, and for the foreign exchange returns is 0.0017; that is, the stock market
is more volatile on average than the foreign exchange market, which is because the volatility in the
Forex market is controlled at certain degree by the BCRP, whereas the stock market more directly
reflects the uncertainty brought about by multiple shocks to the economy.

8The filtered estimations of the volatilities are carried out using J = 10 and I = 2500 in the auxiliary particle
filter of Omori et al. (2007).
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4 Conclusions

Following the study of the Peruvian financial returns based on the canonical SV approach of Alanya
and Rodríguez (2014), this study extends the canonical SV model to new specifications that take
into account an t-Student error and asymmetries between the returns and the variance. Likewise,
conditional heteroskedasticity models are estimated by employing the same specifications through
Bayesian algorithms.

With respect to the estimated asymmetry parameters in the stock market, this has a nega-
tive sign in both specifications and under Normal and t-Student errors, which is characteristic of
these markets, because a negative shock in this market generates more volatility than a positive
shock. The results in Table 3 shows that for the stock market the parameter of asymmetry has
a confidence interval including zero or positive values. It implies the possibility that asymmetric
effects are inexistent in this market. Tha results for the ASV-N and ASV-t models indicate the
same conclusion. In comparison with the EGARCH models, the existence of asymmetric effects
is weakly. The result is interesting because Lengua Lafosse et al. (2015) find similar results for
the Latin American stock markets using a more sophisticated model belonging to the ASV family
models.

In the Forex market the parameter has a positive sign, which means that a depreciation shock
(positive) in the exchange rate generates greater volatility than an appreciation shock (negative);
thus, the BCRP faces relatively major problems in its intention of smoothing the Forex exchange
volatility.

On comparing the evolution of the volatilities, it can be observed that the volatilities, when
affected by the same shocks on the economy, show a similar dynamic in time. Moreover, the
coeffi cient of correlation between the stochastic volatilities of the returns is 0.45, which indicates
similar propagation of the uncertainty in both markets. As is shown in our estimations of the ASV
models, the parameter that measures the mean of the volatility in the long term β for the stock
market returns is 0.0103, and for the foreign exchange returns is 0.0017; that is, the stock market
is more volatile on average than the foreign exchange market, which is because the volatility in the
Forex market is controlled at certain degree by the BCRP, whereas the stock market more directly
reflects the uncertainty brought about by multiple shocks to the economy.

The estimations show little ineffi ciency in the estimation of the parameters measured under the
Geweke index, except for the case of the SV models that factor in t-Student errors, given that the
estimated degrees of freedom are high, with which these SV models do not necessarily produce
a better fit than models that assume Normal errors in the returns employed using the marginal
likelihood statistic. The model with the best fit in both returns is the ASV model with Normal
errors. The stock market returns have greater periods of volatility; however, both markets react
to shocks in the economy, as they display similar patterns and have a significant correlation for
the sample period studied. This suggests, as a topic for the agenda, that a multivariate model of
asymmetric stochastic volatility would be capable of identifying these common volatility factors
and better explaining the volatilities displayed in both Peruvian financial series.
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Table 1. Descriptive Statistics for Returns and Volatility

Values Stock Forex

Returns Volatility Returns Volatility

(1998:01—2011:12) (1998:01-2011:12)

Mean 0.001 -10.454 0.000 -14.930

Median 0.001 -10.127 0.000 -14.124

Maximum 0.128 -4.028 0.022 -7.540

Minimum -0.133 -27.253 -0.023 -23.748

Standard Deviation 0.015 2.538 0.002 3.700

Skewness -0.441 -1.088 0.281 -1.324

Kurtosis 13.188 5.555 15.635 4.198

Observations 3374 3377
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Table 2. Estimation of EGARCH, EGARCHt Models

Parameters Mean SD Confidence Interval Geweke Ineffi ciency

MCMC at 95% Index

Stock Market

EGARCH-N

ω -0.458 0.051 [-0.551, -0.363] 0.508 6.06

α 0.403 0.025 [0.353, 0.453] 0.294 4.74

β 0.947 0.006 [0.936, 0.957] 0.532 6.04

θ -0.037 0.011 [-0.059, -0.016] 0.905 3.13

EGARCH-t

ω -0.454 0.077 [-0.645, -0.322] 0.810 18.21

α 0.310 0.027 [0.258, 0.356] 0.540 9.38

β 0.956 0.008 [0.936, 0.970] 0.835 18.03

θ -0.021 0.011 [-0.044, -0.001] 0.538 6.18

ν 7.136 0.793 [5.816, 8.880] 0.378 33.23

Forex Market

EGARCH-N

ω -0.386 0.046 [-0.468, -0.297] 0.189 17.84

α 0.399 0.020 [0.358, 0.439] 0.502 6.24

β 0.967 0.004 [0.960, 0.974] 0.179 17.14

θ 0.064 0.010 [0.044, 0.085] 0.622 4.13

EGARCH-t

ω -0.542 0.083 [-0.710, -0.390] 0.410 10.68

α 0.336 0.026 [0.286, 0.388] 0.302 10.07

β 0.965 0.006 [0.953, 0.975] 0.436 10.01

θ 0.045 0.011 [0.024, 0.067] 0.968 4.06

ν 4.510 0.387 [3.848, 5.333] 0.364 28.07
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Table 3. Estimation of SV, SVt, ASV, ASVt Models

Parameters Mean Standard Deviation Confidence Interval Geweke Ineffi ciency

MCMC at 95% Index

Stock Market

SV-N

φ 0.9646 0.0068 [0.9502, 0.9765] 0.295 4.78

σ 0.2881 0.0229 [0.2473, 0.3369] 0.717 9.57

β 0.0103 0.0008 [0.0088, 0.0118] 0.418 1.06

SV-t

φ 0.9694 0.0064 [0.9559, 0.9810] 0.968 11.94

σ 0.2638 0.0230 [0.2203, 0.3099] 0.672 17.96

β 0.0099 0.0008 [0.0085, 0.0115] 0.339 0.64

ν 24.3452 3.7498 [16.9650, 31.6409] 0.162 94.91

ASV-N

φ 0.9641 0.0065 [0.9508, 0.9761] 0.317 1.46

σ 0.2889 0.0213 [0.2486, 0.3306] 0.126 1.64

β 0.0103 0.0007 [0.0089, 0.0118] 0.000 1.72

ρ -0.0809 0.0456 [-0.1675, 0.0089] 0.110 3.63

ASV-t

φ 0.9690 0.0063 [0.9555, 0.9805] 0.001 11.93

σ 0.2630 0.0220 [0.2228, 0.3088] 0.000 30.30

β 0.0099 0.0008 [0.0085, 0.0116] 0.000 3.83

ρ -0.0906 0.0484 [-0.1819, 0.0074] 0.276 4.56

ν 23.4283 4.5933 [16.1060, 33.3119] 0.000 153.77
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Table 3 (continues). Estimation of SV, SVt, ASV, ASVt Models

Parameters Mean Standard Deviation Confidence Interval Geweke Ineffi ciency

MCMC at 95% Index

Forex Market

SV-N

φ 0.9744 0.0053 [0.9633, 0.9843] 0.103 3.28

σ 0.3082 0.0219 [0.2673, 0.3516] 0.851 5.48

β 0.0016 0.0002 [0.0013, 0.0020] 0.064 0.95

SV-t

φ 0.9779 0.0050 [0.9675, 0.9875] 0.533 7.27

σ 0.2817 0.0214 [0.2408, 0.3238] 0.328 18.14

β 0.0016 0.0002 [0.0013, 0.0020] 0.000 1.97

ν 27.0504 4.9889 [19.3613, 39.8727] 0.008 106.67

ASV-N

φ 0.9709 0.0052 [0.9602, 0.9807] 0.512 7.69

σ 0.3057 0.0212 [0.2648, 0.3481] 0.427 14.86

β 0.0017 0.0002 [0.0014, 0.0021] 0.042 0.62

ρ 0.2102 0.0456 [0.1193, 0.2976] 0.169 4.39

ASV-t

φ 0.9739 0.0051 [0.9635, 0.9835] 0.487 5.98

σ 0.2829 0.0216 [0.2414, 0.3252] 0.265 17.33

β 0.0017 0.0002 [0.0014, 0.0021] 0.019 2.25

ρ 0.2268 0.0483 [0.1319, 0.3217] 0.006 5.29

ν 29.5265 5.5579 [19.5011, 40.9226] 0.576 170.62
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Table 4. Marginal Likelihood Estimation for GARCH, EGARCH, SV and ASV Models

Model Marginal Likelihood

Stock Market

GARCH-N 10252.536

GARCH-t 10338.708

EGARCH-N 10268.751

EGARCH-t 10345.472

SV-N 10355.871

SV-t 10349.855

ASV-N 10358.478

ASV-t 10352.638

Forex Market

GARCH-N 15707.927

GARCH-t 16570.616

EGARCH-N 16788.658

EGARCH-t 17008.202

SV-N 17001.796

SV-t 16996.787

ASV-N 17009.383

ASV-t 17004.490
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Figure 2a. Correlations, Iterations and Posterior Distributions for EGARCH-N Model in Sock Returns
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Figure 2b. Correlations, Iterations and Posterior Distributions for EGARCH-t Model in Stock Returns
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Figure 3a. Correlations, Iterations and Posterior Distributions for EGARCH-N Model in Forex Returns
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Figure 3b. Correlations, Iterations and Posterior Distributions for EGARCH-t Model in Forex Returns

F-3



0 300 600 900

0

1
a.) φ |y Correlations

0 300 600 900

0

1
b.) σ |y Correlations

0 300 600 900

0

1
c.) β |y Correlations

0 2000 4000

0.94

0.96

0.98
d.) φ |y Iterations

0 2000 4000

0.25

0.30

0.35

e.) σ |y Iterations

0 2000 4000

0.008

0.010

0.012

0.014
f.) β |y Iterations

0.950 0.975

25

50

g.) φ |y Density

0.25 0.30 0.35

5

10

15

20
h.) σ |y Density

0.0075 0.0100 0.0125 0.0150

250

500
i.) β |y Density

Figure 4a. Correlations, Iterations and Posterior Distributions for SV-N Model in Stock Returns
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Figure 4b. Correlations, Iterations and Posterior Distributions for SV-t Model in Stock Returns
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Figure 5a. Correlations, Iterations and Posterior Distributions for ASV-N Model in Stock Returns
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Figure 5b. Correlations, Iterations and Posterior Distributions for ASV-t Model in Stock Returns
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Figure 6a. Correlations, Iterations and Posterior Distributions for SV-N Model in Forex Returns
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Figure 6b. Correlations, Iterations and Posterior Distributions for SV-t Model in Forex Returns
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Figure 7a. Correlations, Iterations and Posterior Distributions for ASV-N Model in Forex Returns

0 300 600 900

0

1
a.) φ |y Correlations

0 300 600 900

0

1
b.) σ |y Correlations

0 300 600 900

0

1
c.) β |y Correlations

0 300 600 900

0

1
d.) ρ |y Correlations

0 300 600 900

0

1
e.) ν |y Correlations

0 2000 4000

0.96

0.97

0.98

0.99
f.) φ |y Iterations

0 2000 4000

0.25

0.30

0.35

g.) σ |y Iterations

0 2000 4000

0.0015

0.0020

h.) β |y Iterations

0 2000 4000

0.1

0.2

0.3

0.4
i.) ρ |y Iterations

0 2000 4000

20

30

40

50
j.) ν |y Iterations

0.96 0.98

25

50

75
k.) φ |y Density

0.2 0.3 0.4

10

20
l.) σ |y Density

0.0010.00150.0020.0025

1000

2000

m.) β |y Density

0.0 0.2 0.4

2.5

5.0

7.5

n.) ρ |y Density

10 30 50

0.025

0.050

0.075
o.) ν |y Density
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Figure 8a. Smoothed Volatility for SV, SVt, ASV, ASVt Models in Stock Returns
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Figure 9a. Smoothed and Filtered Volatility for the ASV Model in Stock Returns
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Figure 9b. Smoothed and Filtered Volatility for the ASV Model in Forex Returns
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