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Modelling the Volatility of Commodities Prices using a Stochastic
Volatility Model with Random Level Shifts

Dennis Alvaro Ángel Guillén
Central Reserve Bank of Peru Pontificia Universidad Católica del Perú

Gabriel Rodríguez
Pontificia Universidad Católica del Perú

Abstract

We use the approach of Qu and Perron (2013) for the modeling and inference of volatility of a set
of commodity prices in the presence of level shifts of unknown timing, magnitude and frequency.
The model has two features: (i) it is a stochastic volatility model comprising both a level shift and
a short-memory process where the first component is modeled as a compounded binomial process
while the second one is an AR(1) process; (ii) the model is estimated using Bayesian techniques in
order to obtain posterior distributions of the parameters and the two latent components. We use
six commodity series: agriculture, livestock, gold, oil, industrial metals and a general commodity
index. All series cover the period from January 1983 until December 2013 in daily frequency. The
results show that although the occurrence of a level shift is rare (about once every 1.5 or 1.8 years),
this component clearly contributes most to the variation in the volatility. The half-life of a typical
shock from the AR(1) component is short, on average 13 days. Furthermore, isolating the level
shift component from the overall volatility indicates a stronger relationship between volatility and
Peruvian business cycle movements.

JEL Classification: C22, C52, G12.
Keywords: Stochastic Volatility, State-Space Models, Bayesian Inference, Structural Change,
Commodity Prices.

Resumen

En este documento usamos el enfoque de Qu y Perron (2013) para la modelación, estimación e in-
ferencia acerca de la volatilidad de un grupo de precios de commodities en la presencia de cambios
de nivel de fecha, magnitud y frecuencia desconocidas. El modelo tiene dos rasgos: (i) es un modelo
de volatilidad estocástica que comprende tanto un proceso de cambios de nivel como un proceso
de corta memoria. El primer componente es modelado como un proceso mixto gobernado por una
variable Binomial mientras que el segundo proceso es modelado como un proceso AR(1); (ii) el
modelo se estima utilizando técnicas Bayesianas con el fin de obtener distribuciones posteriores de
los parámetros y de los dos componentes latentes. Utilizamos seis series de commodities: agricul-
tura, ganadería, oro, petróleo, metales industriales y un índice de commodities en general. Todas
las series cubren el período de Enero de 1983 hasta Diciembre de 2013 con frecuencia diaria. Los
resultados muestran que a pesar que la ocurrencia de un cambio de nivel es rara (aproximadamente
una vez cada 1.5 o 1.8 años), este componente contribuye claramente más a la variación en la
volatilidad. La vida media de un choque típico de la especificación AR(1) es corta, en un promedio
de 13 días. Además, aislando el componente de cambio de nivel de la volatilidad global indica una
relación más fuerte entre los movimientos de la volatilidad y el ciclo económico peruano.

Clasificación JEL: C22, C52, G12.
Palabras Claves: Volatilidad Estocástica, Modelos en Forma Espacio-Estado, Inferencia Bayesiana,
Cambio Estructural, Precios de Commodities.



Modelling the Volatility of Commodities Prices using a Stochastic
Volatility Model with Random Level Shifts1

Dennis Alvaro Ángel Guillén
Central Reserve Bank of Peru Pontificia Universidad Católica del Perú

Gabriel Rodríguez2

Pontificia Universidad Católica del Perú

1 Introduction

The volatility of commodity prices such as oil or minerals is an important issue for small and open
economies that depend on raw materials. For example, in many Latin American countries, the
volatility of commodities can affect the operating costs or investment schedules of businesses in the
primary sector. At the macroeconomic level, high volatility can produce changes in the current
account and in capital inflows, or, on the side of importers and exporters, increase uncertainty
regarding production costs and inflation. Therefore, modeling volatility of commodity prices would
be useful for private agents and policy makers. For the former, it gives valuable information for
better options contracts that allow hedging under great uncertainty, while for the latter, it can aid
in a better understanding of business cycles given the correlation between mineral price fluctuations,
capital inflows, and investment expectations.

In this paper we focus on modeling the volatility of the overall commodities market and some
sectors that themselves have huge repercussions on the global economy (e.g. industrial metals,
oil, gold). To this end, we study commodity market indexes, in particular the Standard & Poors
Goldman Sachs Commodity Index (hereinafter S&P GSCI). As documented in Indices (2014), the
S&P GSCI is a benchmark for investment in the commodity markets and a measure of commodity
market performance over time. It is also a tradable index that is readily accessible to market
participants, so we take this index as the best approximation of commodity market performance.
The composition of this index is dominated by energy commodities, where oil accounts for 66% of
the total index. Other commodities make up far less of the total; for instance, industrial metal and
precious metals represent only 7% and 3% of the index, respectively. For this reason, in Section 2
we analyze the volatility of the commodity index as a whole, and of certain indexes that compose
it, such as the gold, oil, industrial metals, agriculture, and livestock index.

The evolution of commodity prices are studied just like any other financial series in the literature.
What is more, there exist commodity stocks markets and commodity future markets where a high
degree of speculations mixes with fundamentals. The pioneering work of Brennan and Schwartz
(1985) analyzes the stochastic nature of natural resources prices and applies stochastic optimal

1This paper is drawn from the Master Thesis of Dennis Alvaro and Ángel Guillén at the Graduate School of the
Pontificia Universidad Católica del Perú. We thank useful comments of Luis García and Jorge Rojas (PUCP), Paul
Castillo (Central Bank of Peru), Pierre Perron and Zhongjun Qu (Boston University). We also thank comments
received at the XXXIII Meeting of the Central Bank of Peru (Lima, October 27-28, 2015), and a Seminar at the
Department of Economics, Pontificia Universidad Católica del Perú. Any remaining errors are our responsibility.

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Pontificia Universidad Católica
del Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), E-Mail Address:
gabriel.rodriguez@pucp.edu.pe.
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control to the valuation of investment projects. Fama and French (1987) evaluates commodity-
futures prices using the theory of storage3 and as a forecast of a future spot price with a risk
premium. Fama and French (1988) focuses on metal-futures prices, analyzing them using the theory
of storage and their relationship with stages in the business cycles. Gibson and Schwartz (1990)
proposes a two factor model to analyze the pricing of oil contingent claims based on the convenience
yield, and Schwartz (1997) analyzes the behavior of commodity prices under several factor models
of stochastic basis, finding typical features of financial series such as mean reversion. A theoretical
foundation on the stochastic nature of the uncertainty in investment can be found in Ingersoll
and Ross (1992). Other works analyzing the role of certain commodities in portfolio investment
include Jaffe (1989), which highlights the role of gold or precious metals in diversified portfolios,
and Ankrim and Hensel (1993) which focuses on the similarities between commodity and real estate
investment as inflation hedges. Moreover, Gorton and Rouwenhorst (2006) describes the financial
properties of commodity-based financial instruments such as futures and finds similar behavior to
equity risk premium and a negative correlation with other instruments. All these financial studies
evaluate volatility dynamics as crucial for their results. Also, evaluation of volatility behavior alone
is found in different studies such as that of Askari and Krichene (2008), who find that oil is very
volatile and sensitive to small shocks even though assumptions about market fundamentals hold.
Brunetti and Gilbert (1995) studies the volatility of industrial metals from 1972 to 1995 and find
that volatility does not increase during that period, which runs contrary to common opinion. These
findings suggest that commodity prices evolve quite similarly to other financial series. Therefore,
it is relevant to talk about the returns of commodity prices and their associated volatility.

For this reason, we apply stock return volatility models to commodities-price series. In this field
the literature is vast, and the different models proposed can be grouped into two categories: GARCH
models and stochastic volatility (SV) models. For a complete survey of theses approaches, see Engle
(1995) and Shephard (1995), respectively. The principal characteristic of GARCH models is that
they explicitly model the conditional variance of returns given past returns; specifically, volatility
is predicted one-step-ahead. Meanwhile, in the SV model the predictive distribution of returns is
specified indirectly via the structure of the model, rather than explicitly. The main advantage of
SV models is that they have strong theoretical support, primarily from Taylor (1986) and Taylor
(1994). Also, there are many possible filtering techniques to estimate the volatility as a latent
variable.

The SV models are diffi cult to estimate in the sense that volatility is an unobserved variable.
SV models have error terms in the mean and also in the variance equation, making the likelihood
function diffi cult to evaluate. The Method of Moments was suggested as a possible option to
estimate SV models, and was developed by Taylor (1986) among others, but is subject to effi ciency
problems. Also, quasi-maximum likelihood estimators can be found using the Kalman filter, as in
works like Harvey, Ruiz, and Shephard (1994). Finally, Bayesian procedures have been the most
popular method of evaluating SV models since Jacquier, Polson, and Rossi (1994), who found that
this estimation procedure outperforms the others. In this field, Kim, Shephard, and Chib (1998)
provide quite an extensive discussion of various alternative methods for the actual implementation
of Markov Chain Monte Carlo (MCMC) algorithms in order to simulate posterior distributions.
The issue of sampling to simulate posterior distributions is relevant in most Bayesian analyses
and makes a very large difference in the computational effi ciency of the methods. Kim, Shephard,

3Theory of storage explains the spread between spot and futures prices based on the convenience yield on inventory.
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and Chib (1998) proposes an improved MCMC algorithm based on an offset mixture of normal
distributions for the error term. Finally, filtering follows as a special case of Pitt and Shephard
(1999) and results are better than GARCH models.

Volatility in financial series has some important features, such as clustering, leverage effects,
and long memory. This study addresses the phenomenon of long memory in the volatility of
commodity return series. Long memory can be described as having a slow rate of decay in the
autocorrelation function (hereafter ACF) of a particular time series. These processes have been
termed in the literature as fractional integrated processes I(d) since Adenstedt (1974) and Granger
(1980). This phenomena can be found in any time series, but is a particular feature that has been
observed in the financial volatility of returns, and as such much work has been trying to model this
characteristic. For example, Baillie (1996) is a complete survey of econometric developments related
to long memory and its applications in economic and financial series. Also, Baillie, Bollerslev, and
Mikkelsen (1996) develops a fractionally integrated model for volatility in the family of ARCH
models (FIGARCH).

The other topic of interest in this work is structural change, which is an important feature
in macroeconomic time series. The seminal paper of Perron (1989) shows that the presence of a
unit root may be confused with structural breaks in the series. This idea has been generalized
to the context of volatility in which structural breaks may lead to the false identification of long
memory. The confusion of long-memory processes with the presence of level shifts has been studied
since Diebold and Inoue (2001), but that work presents evidence against long-memory processes
on the basis of level shift tests that are biased. Perron and Qu (2007) find theoretical results
regarding the behavior of a short-memory process affected by level shifts, focusing on the time
and spectral domain. They observe that the periodogram of the above-mentioned process follows
a similar pattern to a long-memory process, so it is possible to confuse these processes in empirical
applications. Also, Perron and Qu (2010) analyze the properties of the ACF, the periodogram, and
the log periodogram estimate of the memory parameter of a short-memory process with level shift
explained by a mixture model, and find behavior similar to long-memory processes. By analyzing
data from various indices of stock markets, they identify similarities between the estimated statistics
and their theoretical results.

Qu and Perron (2013) and Lu and Perron (2010) estimate two different kinds of random level-
shift (RLS) models of volatility. Lu and Perron (2010) estimates their model using an extension
of the Kalman filter, and the model proposed can be transformed directly in state-space form by
assuming a linear combination of a short-memory process and a random level-shift component
to explain the log of the absolute returns as a proxy of volatility. They find that the remaining
component, if accounting for level shifts, is a short-memory process. Qu and Perron (2013) proposes
a stochastic volatility model affected by random level shifts. Hence, Bayesian estimation follows
procedures based on Kim, Shephard, and Chib (1998) for sampling of the posterior distributions
by taking into account the random level-shift term. The distribution of the probability of shifts
follows a Bernoulli distribution, so the probability changes in time. They apply this model to the
Nasdaq and S&P 500 time series from 1980 to 2012 and for different priors in order to address a
sensitivity analysis. Also, they get better results on the interaction of the volatility with indicators
from the business cycle in the United States.

Our work is based on the final model of Qu and Perron (2013) and seeks to determine whether
long memory exists in commodity-return volatility series, or whether a short-memory process with
structural breaks applies. Commodity prices and volatilities affect portfolio decisions and business
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cycles, but little work has been done on modelling financial series of interest to Peru using econo-
metric techniques. An initial approach by Humala and Rodríguez (2013) studies exchange rate and
Lima Stock Exchange returns, and concludes that this series has same statistical properties as any
other financial series in a developed market. More recently, Alanya and Rodríguez (2014) have
used a SV model following Kim, Shephard, and Chib (1998) to track Peruvian stock market and
exchange rate volatilities. Our study constitutes an attempt to fill a gap in this line of research by
analyzing commodity volatilities.

The remainder of this document is structured as follows: Section 2 contains some features of the
commodities volatility; Section 3 describes the applied methodology; Section 4 contains the overall
results and for each kind of commodity, as well as a brief analysis of business cycle comovements.
Finally, Section 5 presents the conclusions.

2 Features of Commodity Volatility

In this paper we focus on commodity-price volatility because this variable is relevant to private and
public agents in Latin American countries. However, before estimating this volatility, it is worth
analyzing some features of the series and justifying the method that would fit best fit the volatility
component of these series. First of all, we use the S&P GSCI as the approximation of commodity
market performance. This index includes all eligible contracts that represent transactions of a
physical commodity4, and is built from the weighted-sum of contracts of different commodities.
Table 1 shows the component of the S&P GSCI. Clearly, oil is the commodity with the greatest
contribution to the index (67.2%), followed by agriculture subindexes (15.3%). We have chosen
to analyze the entire commodity market and its components given possible differences between
markets that may influence volatility. Thus, we study the commodity index, industrial metals, oil,
gold, the agriculture index, and the livestock index5.

In Figure 1 we can see the evolution of daily returns of commodities from January 1983 to
December 2013. A first feature of all series is their volatility, which grows in certain periods. These
periods of high volatility may be common to all series, as occurred between 2008-2009, which was
associated with the international financial crisis; or to a particular commodity, as in late 1990 and
early 1991, which was marked by high volatility in oil prices associated with the Gulf War. In
general, we observe that the series behaves similarly to any given high-frequency financial asset,
such as stock returns. Therefore, it is valid to use financial modeling techniques to analyze the
volatility of commodity markets.

A second feature, also linked to the volatility of the series, is the difference in behavior between
markets. For example, variations in returns are larger in oil and industrial metals than in agricul-
tural goods or livestock. In addition, these goods have different paths of volatility. For example,
gold underwent a period of volatility during late 2000 and early 2001, possibly associated with the
dot-com crisis in the United States; industrial metals were subject to a period of high volatility
between 2005 and 2008, which was probably caused by high demand in developing countries such
as China; while agricultural goods witnessed a high volatility period in the late ’90s due to the fall
of the Soviet block, which was a major crop producer in the world market. Each of these periods
of high volatility for a certain commodity have not been replicated by other markets. Therefore,

4For more details of S&P GSCI methodology, see Indices (2014).
5We separate oil and gold from their respective subindexes due to the individual importance of these commotities

to the global economy.
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while analysis of a set of commodities is useful at the aggregate level, it is important to analyze
each market separately given the intrinsic characteristics that influence their level of volatility.

Since it is plausible to analyze the returns of commodity prices as if they were financial series,
it is worth noting two of the most important features of this type of time series. First, as has been
already seen, the presence of volatility clustering; and second, the volatility persistence, or long-
memory. The latter characteristic has taken on increased relevance in the literature on volatility. A
simple way to detect whether the volatility of a series has long memory is by estimating the ACF of
the logarithm of its squared returns. If long memory exists, then the ACF will slowly decay to zero.
As shown in Figure 2, commodities decay slowly to zero after 1500 days, on average. Moreover,
after reaching zero, the ACF fluctuates around zero up to the maximum number of lags. Similar
behavior in the ACF is reported by Perron and Qu (2010) in their analysis of the S&P 500 index of
the New York Stock Exchange, in which they argue that this behavior is a stylized fact of financial
series that are suspected to have long memory6.

As mentioned above, the assumption of long memory must be carefully analyzed. The empirical
evidence (see, for example, Perron and Qu (2010)) suggests that the long-memory phenomenon can
be confused with a process that has rare discrete level changes which is alters the levels of volatility
in the long run. A first approach to assessing whether a process has long memory is by estimating
the parameter d using the log-periodogram, as proposed by Geweke and Porter-Hudak (1983). The
results of this estimation are shown in Figure 3. Each frame shows the estimation of the parameter
memory, d, for each commodity, which is on the y axis, while the frequency of the data is on
the x axis. If the process is long memory then the parameter d should be the same for all sizes
of frequency. However, the parameter memory tends to decay the higher the frequency is. The
vertical lines crossing each of the figures represent the T 1/3, T 1/2 and T 2/3 frequencies for a sample
of T = 7818. Thus, for low frequencies (between T 1/3 and T 1/2) the parameter d is greater than 0.5,
on average, while higher frequencies tend to decline, which continues even for frequencies greater
than T 2/3.

The results found in the log-periodogram are similar to those found by Perron and Qu (2010),
who analyze the volatility of S&P 500. According to these authors, the fall in the long-memory
parameter with increasing frequency is due to the existence of two components of volatility: a first
component, short-run, present throughout the entire series; and another component, level shifts,
that cause jumps in volatility levels that resemble long-memory processes7. The latter component is
dominant at low frequencies, but as the number of frequencies increases, the short-term component
is dominant and hence the parameter d tends to decline.

A second approach to assess long-memory processes is to rule whether or not they are spurious.
For this, we use the test of Qu (2011), whereby, under the null hypothesis, the process has long
memory, while under the alternative hypothesis, the process is one of short memory with level
shifts. The results of the test applied to the volatility of commodities are presented in Table 2.
The first column shows the estimated d for T = 0.7; that is, to a frequency which is slightly right
of T 2/3. It has none of the estimated d exceeding 0.5, which is consistent with the literature.

6According to Qu and Perron (2013) a process has long memory if γz (τ) = g (τ) τ2d−1 as τ → ∞, where zt is a
stationary time series, γz (τ) its autocorrelation function, d > 0 and g (τ) is a slowly varying function as τ → ∞.
The ACF decreases to zero at a hyperbolic rate, in contrast to the fast geometric rate observed for short-memory
processes with d ∈ (0, 1/2) .

7As noted by Perron (1989), a time series with the presence of breaks or level shifts resembles the behavior of a
non-stationary time series, which is equivalent to a very persistent process.
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On the other hand, the next two columns show the test statistics for two types of trimming. All
volatilities of commodity returns reject the null hypothesis of long memory with a significance
level of 1%. This would indicate that commodity volatilities present discrete steps that can be
interpreted as structural changes or strong shocks that permanently alter the level of volatility,
simulating apparent long memory.

In summary, after analyzing the series of commodity prices, we observed: i) the high volatility
of the series, accompanied by volatility clustering and high persistence, similar to that found in
financial series; ii) certain differences between the commodities markets, suggesting a separate
analysis for each series; and iii) the apparent long memory of the series is actually caused by
discrete jumps in volatility, the occurrence of which is relatively low. In view of this evidence, it is
reasonable to model the volatility of commodity returns using an econometric model of volatility
including the possibility of level shifts.

In the econometric literature, the SV models have been improved to include level changes; for
example, in the work done by Qu and Perron (2013). One advantage of this model is that volatility
can be easily represented as the aggregation of two latent variables, one short term and one long
term, the latter with level jumps, and both components can be estimated. GARCH type models
also include level jumps, as in Stărică and Granger (2005). Another type of GARCH model, but
applied to the volatility of oil prices, is developed by Charles and Darné (2014). Both models
concur that level jumps are relevant in explaining the series with high persistence, but the jumps
are exogenous to the model. In the present study we choose to follow the proposal of Qu and Perron
(2013) and apply a SV model with random level shifts to model the volatility of commodity prices.
The methodology used is described below.

3 Methodology

The SV model with random level shifts follows the estimation method and inference using Bayesian
analysis of Qu and Perron (2013). The objective of the paper is to model volatilities of the returns of
principal commodities exported by Peru with a short-memory component and random level shifts.

3.1 The Model

First, the process of the returns is mean corrected and is expressed by

xt = exp(µt/2 + ht/2)εt, (1)

where the error term εt is an i.i.d. standard Normal random variable. The term ht gives us the
stochastic volatility, while the second term µt expresses the random level-shifts component. The
volatility ht is explained by a stationary AR(1) process with vt as a Normal standardized error
term:

ht = φht−1 + σvvt. (2)

On the other hand, the level-shifts component is given by the random Bernoulli variable δt that
takes value 1 with probability p. Also, the size of the shift is stochastic and is given by the Normal
standardized random variable ηt:

µt = µt−1 + δt−1σηηt. (3)

6



The random variables εi, vj , δk, ηl are mutually independent for all 1 6 i, j, k, l 6 n. The level-
shifts component allows us to have different sized random shifts. Allowing for this characteristic
of the process, we can determine the component ht as a short-memory process for the variables
analyzed.

Our proxy for volatility is given by the log-squared mean-corrected returns log x2t , so our model
can be expressed by the following form:

log x2t = ht + µt + log ε
2
t , (4)

ht+1 = φht + σvvt, (5)

µt+1 = µt + δtσηηt. (6)

Because εt is Normally distributed, the model is a partial non-Gaussian state space model.
The way of addressing this problem is by filtering, as in Kim, Shephard, and Chib (1998) with
approximation of the term log ε2t by a mixture of Normals. A new error process is defined by ε

∗
t as

ε∗t = log ε
2
t − E(log ε2t ).

Following Kim, Shephard, and Chib (1998), we approximate the distribution of this new process
using the mixture of Normals: ε∗t ∼

∑K
i=1 qiN(mi, σ

2
i ),where the parameters K, qi,mi, σ

2
i that

describe the distribution can be found in the work mentioned. We identify wt = j, where wt is
assigned that value if ε∗t is a realization of the j

th component of the mixture of Normals. This way
of threatening the nonlinearity of log ε2t allow us to puts all the models in a Gaussian state-space
model conditioned on the mixture.

Finally, to complete the specification of the model we address the problem of return values
close to zero that distorts the results of the estimations. We define another variable yt by yt =
log(x2t + c)−E(log ε2t ), where c is a small number that renders the number inside the logarithm far
away from the value of zero. This specification was first used by Fuller (1996) on the literature on
stochastic volatility. The “offset”value c is 0.001, as in Qu and Perron (2013). At last, we have
the model expressed by:

yt = ht + µt + ε
∗
t , (7)

ht+1 = φht + σvvt, (8)

µt+1 = µt + δtσηηt, (9)

with initial conditions (h0, µo) = 0 and (h1, µ1)
′ ∼ N(0, P ).

3.2 Sampling Procedure

We express variables and parameters in vector notations following Qu and Perron (2013). Let α1 =
(h1, µ1) , R =

{
(υ1, η1)

′ , ..., (υT , ηT )
′} , δ = (δ1, ..., δT ) , ω = (ω1, ..., ωT ) , θ = (φ, συ, ση, p) and

y = (y1, ..., yT ) . The location of shifts is related to the variable δ, whereas δ,R and α1 jointly give
the stochastic volatility process. Sampling from the joint posterior distribution f (θ, α1, R, δ, ω|y)
is equivalent to sampling from the following four blocks: (i) f

(
θ(−p), α1, R|p, δ, ω, y

)
, where θ(−p)

denotes the vector of parameters excluding p; (ii) f (δ|θ, α1, R, ω, y) ; (iii) f
(
p|θ(−p), α1, R, δ, ω, y

)
;

and (iv) f (ω|θ, α1, R, δ, y) . Each of these blocks generates draws using the Gibbs sampling proce-
dure.
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3.3 Specification of Priors

We use the prior distribution of Kim, Shephard, and Chib (1998). For φ, we have π (φ) ∝
{1+φ2 }

φ(1)−1{1−φ2 }
φ(2)−1 with φ(1), φ(2) > 1

2 . We set φ
(1) = 20 and φ(2) = 1.5, implying a prior

mean of 0.86. For the συ, we use the Inverse-Gamma distribution so σ2υ ∼ IG (σr/2, Sσ/2) with
σr = 5 and Sσ = 0.01×Sσ. In the case of p and ση, we use the prior distribution of Qu and Perron
(2013) which are the Beta and the Inverse-Gamma. For p ∼ Beta (γ1, γ2) with γ1 = 1 and γ2 = 40,
which implies a prior mean of 1/41 or a shift each 41 days. For ση ∼ IG (σ∗r/2, S∗σ/2) with σ∗r = 20
and S∗σ = 60, which implies a prior mean of 3.33 and a variance of 1.39. For the initial conditional
state, we use diffuse priors with (h1, µ1) ∼ N (0, P ) with P = diag

(
1× 106, 1× 106

)
.

3.4 Filtering

In the filtering process we seek to recursively obtain a sample of draws from (αt|Xt, θ) for t =
1, ..., T . Then we use a particle filter like that of Kim, Shepard and Chib (1998), which, for a
given sample of M , α(j)t (j = 1, ...,M) is drawn from the distribution of (αt|Xt, θ), a sample from

f (αt+1|Xt+1, θ) is obtained by drawing from f [αt+1|α(j)t , Xt+1, θ], and they are reweighted using

f [αt+1|α(j)t+1, Xt+1, θ]. The distribution
f(αt+1|α(j)t ,Xt,θ)
f(xt+1|Xt,θ) depends on whether a shift occurs at time t

and is given by αt+1|[α(j)t , Xt, θ] ∼ δtW (j)
1t + (1− δt)W

(j)
2t with

W
(j)
1t ∼ N

φ 0

0 1

α(j)t ,

σ2υ 0

0 σ2η

 and W (j)
2t ∼ N

φ 0

0 1

α(j)t ,

σ2υ 0

0 0

 .

The associated weights are given by ω
(j)
t+1 =

f [xt+1|α(j)t+1,Xt,θ]∑M
j=1 f [xt+1|α

(j)
t+1,Xt,θ]

, where f [xt+1|α(j)t+1, Xt, θ] ∼

N [0, exp(h
(j)
t+1 + µ

(j)
t+1)].

4 Results

We apply this methodology to six indexes of SPGS: agriculture, livestock, gold, oil, industrial
metals, and a general commodity index. The data are daily frequency over the period of January
1983 to December 2013. The products analyzed are the most representative of the Peruvian trade
balance and, in many cases, their behavior has a big impact on the business cycles of the real
economy. The analysis of commodity volatility is useful for both private and public agents. For the
former, commodity volatility gives insights about risk management, while for the latter, it provides
a better understanding of business cycles. We intend to describe the results in a comprehensive
way, starting with a description of the posterior distribution results of each commodity, followed
by an analysis of the contributions of the level-shift component over all volatility, and, finally,
an analysis of the possible comovements between volatility and several indicators related to the
Peruvian business cycle.

4.1 Posterior Distributions Results

The estimates of volatility parameters are shown in Table 3. A first interesting result is the level
of probability of level shifts. Usually this probability is small; without taking into account gold, a
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break occurs between 300 to 1000 days. Another interesting result is the big differences between
the variance of jumps σ2η and the variance of the short-memory component σ

2
ν . These findings are

consistent with the theoretical proposal of Qu and Perron (2013) that jumps are uncommon events
caused by structural breaks or big shocks that change the level of volatility abruptly and explain
most of it. With respect to the size of the persistence of volatility, measured by the φ parameter, for
most commodities the value of φ is between 0.93 and 0.98, which indicates that volatility shocks on
average have a half-life from 9 days to 30 days, depending on the market analyzed. These findings
are consistent with Qu and Perron (2013), who obtains similar stock index results when level shifts
are counted, and runs counter to studies that hold long-memory assumptions; for example Vivian
and Wohar (2012) estimate a half-life of between 90 and 300 days for commodity volatility shocks.

4.1.1 Commodity Index

As proposed above, we estimate a SV model for commodity prices as a whole. The model captures
major shifts associated with huge shocks in the commodity markets. Panel b) of Figure 4 shows
the level-shift component, the line with discrete changes, and the log volatility, with an overall
measure of volatility that fluctuates around the level shifts. Some major jumps are associated with
important events in commodities markets. For example, the jump that occurred in the beginning
of 1986 was related to a crash in the oil markets. This crisis was a consequence of the “oil glut”
in the first half of the 1980s. After a large expansion in oil production and a resultant surplus, oil
prices fell by over 50% in 1986. The next major jump occurred during the Gulf War in response
to fears of drastic cutbacks in oil production, from 1990 to 1991. The sequence of events and the
evolution of volatility can be seen in the table below. First, the posterior mean of the level-shift
variable µt is held low even during periods of tension, such as that between Iraq and Kuwait from
July 15 to August 1, 1990, but when Iraq attacked Kuwait, the log volatility jumped significantly
from −0.45 to 1.878. Volatility remained high until the US-led coalition force attacked on January
17, 1991, then it decreased progressively to reach 1.42 at the end of January, when Iraq forces
withdrew from Kuwait. After that, the level shift component fell to its previous levels of −0.44.
After the war, the level of µt decreased and remained at these magnitudes for about three years.
This result is consistent with the findings of Jacks, O’Rourke, and Williamson (2011) that point to
high volatility periods in commodities during wars.

Date 07/15/1990-08/01/1990 08/02/1990-01/16/1991 01/17/1991-01/31/1991 02/01/1991-02/28/1991

Event Tensions Attack by Iraq Attack by coalition End of Gulf War

µt -0.45 1.87 to 1.89 1.89 to 1.42 -0.44

On the other hand, two important increases in volatility were reported before the financial
crisis of 2008: one at the beginning of 1996, and another in 2000. both were linked to US economic
performance, but in opposing ways. The first was associated with a fall in the gold price due to

8These numbers theorically represent the level shift component of the volatility µt of commodity price returns.
For example, according to (1), a value of µt = 0 (as ht component has mean zero and short variance) implies that
commodity returns tend to a standard Normal distribution at any t ≥ 0 . For positive µt we have a commodity
returns distribution with fat tails (more probability of extreme values), while for negative µt we have a distribution
with a mass concentration around zero (less probability of extreme values). Thus, we are very interested in how the
µt parameter evolves.
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a strong dollar, while the second one owed to the do-tcom crash and the subsequent recession in
the United States. Finally, the international financial crisis of 2008 caused a jump in volatility in
several markets (oil, gold, and industrial metals). However, the jump in volatility occurred two
months before the crash in September 2008, and the level stayed high for much longer than in
previous crises. As we can see in the table below, log volatility increased progressively from 1.33
in April 2008 to 1.65 in July 2008, and then jumped very slightly to 1.72 and remained at that
level for nine months. For this phenomenon, we venture some explanations. First, the increase in
volatility was progressive and anticipated the crash due to a bad news sequence9. Therefore, the
crash did not represent a great jump in volatility. Some studies, such as Cashin and McDermott
(2002) and Vivian and Wohar (2012), highlight that commodity markets are always volatile and
the last financial crisis did not necessarily represent a large increase in volatility over historical
records. This fact is supported by our estimations; for example the level of volatility was higher
during the Gulf War. However, our study provides new evidence of the duration of periods of high
volatility, whereby volatility during the 2008 crisis remained high for a long time (nine months),
more than in previous crises. Thereby, the magnitude of a crisis could be an important source of
both the magnitude and the duration of volatility.

Date 01/02/08-04/24/08 04/25/08-07/01/08 07/02/08-03/25/09 03/26/09-11/09/09 11/10/09-12/31/09

Event Pre-crash Bad news Crash Post-crash Recovery

µt 0.65 1.33 to 1.65 1.72 1.69 to 1.22 0.71 to 0.51

The method applied reproduces level shifts that are coherent with commodity market evolution
and have permanent effects on the level of volatility10. An interesting result of the estimation is
that shifts are uncommon. According to the posterior distributions reported in Figure 5 (see also
Table 3), the probability of level shifts, p, has a posterior mean of 0.00149, which implies that a
jump occurs each 671 days, roughly every 2.8 years. This makes a lot of of sense if we see jumps as
being caused by rare and unexpected events with a big impact on commodity markets, such as wars,
market crashes, recessions, or financial turmoil. Following with the parameters shown in Figure
5, we obtain the posterior density of the short-memory parameter φ with a mean of 0.948 and a
95% confidence interval of (0.913, 0.971). This value indicates a persistence of the log volatility
that is consistent with the theory, but it is less than in the long-memory process that reports
autoregressive coeffi cients very close to 1. With respect to variances in volatility components, we
find that level-shift variance has a posterior mean of 1.649, while the short-memory component
has a posterior mean of 0.145. That is, perturbations on the permanent component, despite being
rare, have a major impact on the volatility of the series. As we will analyze in the next section,
this component is key to explaining changes in the volatility of commodities. The remaining panels
in Figure 5 show the correlograms of the parameters. In general, these figures indicate that the
Bayesian estimation have no problems related to autocorrelations, and therefore that the estimation
is correct.

The estimation of parameters is robust to different priors. In Table 4 we report the posterior
9For example, the closure of the IndyMac Bank, the rescue of Fannie Mae and Freddie Mac, and several negative

announcements about housing markets and financial indicators.
10We say permanent in the sense that the level shift holds until another structural change or big shock causes

another jump.
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means of commodity volatility under different priors. For example, we choose a range of prior of
p from 0.0167 to 0.001, which implies level shifts of between 60 and 960 days. The results are not
sensitive to this specification; the posterior mean of p are between 0.0013 and 0.0021, or a time
occurrence of level shifts between 462 and 763 days that is consistent with our estimation of 671
days. The rest of the parameters remain unchanged. For example, the short-memory component
has φ = 0.95, while the variance of the level-shifts component is at least ten times higher than the
variance of the short-memory component. We also change the prior of the variance of the level-
shift component with very similar results. We repeat this exercise for the remaining commodities
and find that posterior means and volatility components are not sensitive to prior specification.
However, prior distributions do affect the level of autocorrelation of posterior distributions.

4.1.2 Industrial Metals

Now we turn our attention to the industrial metal index which includes copper, aluminium, lead,
nickel and zinc. Copper, lead, and zinc are Peru’s main exports; above all copper, which accounted
for 23% of all exports from the country in 2013. The filtered volatility series and the shift levels
are found in Figure 6 (see panels (b) and (c)). We can analyze whether the model identifies shifts
that coincide with special events for this index. Specifically, the model identifies relevant positive
shifts for 1987, 2006 and 2008. The table below shows the evolution of the level-shift component
during 1987 and over the following three years. In the first four months of 1987, the level shift
component was −0.79 on average, which was related to a slightly increase in the index price of
0.63% per month. Then, on April 20, the model was subject to a level shift that increased volatility
and held it for six months. This period of high volatility coincided with a sharp increase in prices
at a rate of 5% per month. The major shift occurred on October 20, a day after “Black Monday”11,
when volatility jumped from 0.55 to 2.28. Prices remained very volatile for the next six months,
increased 70% in the first three months, to fall again to previous levels just two months later. After
the crash, volatility dropped progressively and by the end of January 1991 a new level shift pushed
down volatility to −0.72. This period coincided with the end of the Gulf War.

Date 01/02/87-04/16/87 04/20/87-10/19/87 10/20/87-04/14/88 04/15/88-01/23/91 01/24/91-03/23/91

Event Price stability Price rises Black Monday Post-crash Price stability

µt -0.79 0.55 2.28 1.78 to 0.90 -0.72

It is important to highlight that the volatility of industrial metals in 1987-1991 is explained
mainly by supply and demand fundamentals. Even during the stock crash, the demand side would
have been the channel of the impact of volatility on expectations, i.e. expectations of the agents or
uncertainty about American economy. This argument is in the line with Brunetti and Gilbert (1995)
where the high volatility in 1987-1990 is associated with tight demand. According to these authors,
it was not until 1994 that industrial metals attracted hedge funds and investment institutions. They
argue also that the participation of financial institutions in the metals market did not increase
volatility relative to historically levels. This argument is examined in the next table, where we
display the level-shift volatility component from 2006 to 2009, a period of huge financial speculation
in commodity markets and interrupted by a financial crisis. The level shifts stayed low for more

11The S&P 500 fell by about 20% in a single day.
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than ten years, from 1991 to mid-2006. However, on February 2006, a major shift occurred (the µt
component jumped from 0.36 to 1.32). In this case the period of high volatility is explained by a
mix of fundamentals and speculation. A commodity boom was caused mainly by high demand in
developing countries, especially China, but market speculation contributed to a price rise of 50%
in just six months. After this period, a new plateau was reached in which volatility fluctuated
around one. Then, during the financial crash, volatility jumped to 1.51 and increased progressively
for three months, coinciding with a collapse of 50% in price levels. Both periods, though highly
volatile, did not reach the levels reported in 1988. This behavior is also highlighted by Vivian
and Wohar (2012), but in the case of copper they do not find a significant difference between high
volatility in recent years versus volatility in the 1980s.

Date 02/08/06 02/09/06-08/11/06 08/14/06-08/15/2008 08/18/08-11/03/08 11/04/08-09/02/09

Event Pre-boom Market Boom Plateau Crash Post-crash

µt 0.36 1.32 to 1.63 0.97 1.51 to 1.91 1.90 to 1.30

Posteriors distributions and correlograms of the draws are found in Figure 7 (see also Table
3). The probability p has a posterior mean of 0.00292 which is higher than the value of p for the
commodity index. This value of p implies that we have a shift occurring every 342 days, and this
is still higher than our initial prior of every 41 days. The parameter φ has a mean value of 0.932,
which implies a half-life cycle of 10 days, a very short-memory process. With respect to variances
in volatility components, such as in the previous case, the level-shift component has a variance ten
times that of the short-memory component. Jumps in volatility are caused by unusually big shocks,
whereas small and regular shocks determine the stationary dynamic of volatility in the short term.
In panel f), g), h), and i) we report the ACF for the posterior draws. The ACF decays around
zero between the period 100 and 200, while the ACF is slightly out of the confidence bands for the
parameters φ and σv.

4.1.3 Gold

Gold volatility has some characteristics that are different from the other commodities. First, it has
averaged more jumps than other commodities, which can be clearly seen in Figure 8 (see panels
(b) and (c)). Second, many of the periods identified as level shifts are not necessarily common to
all commodities, such as breaks in the mid-90s, early 2000s, or late 2011. Third, if we look at the
posterior distributions in Figure 9, the autoregressive component is about 0.1; i.e. very quickly
converges to the average. Fourth, the difference between the size of the variance of the long-term
and the short-term component is less than in other commodities. This would indicate that the
volatility in gold has a very short memory, and the past has little to do with this volatility.
The long-term impacts are not very large and the frequency is relatively higher. This finding is
consistent with studies by Hammoudeh and Yuan (2008) and Batten, Ciner, and Lucey (2010) which
show that gold is susceptible to various shocks such as economic crises, wars, changes in interest
rates, or supply shocks and is generally more volatile than other metals. Another feature of gold
is its dual role as a financial instrument and as a hedge against inflationary periods. This means
that during periods of uncertainty, gold volatility can increase sharply, as in systems with high
inflation expectations. The Table below shows this behavior through the presence of jumps from
level to the mid-90s. First, from April 1993 until September of that year, an increase occurred in
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the component-level jumps in volatility due to inflation expectations for the US economy. Later,
after interest rates increased throughout 1994, volatility fell instead of rising because offi cials had
already adjusted interest rates. A similar phenomenon occurred prior to the crisis dot-com crisis in
2000; uncertainty about a possible bubble led to greater demand for gold among investors seeking
a safe-haven asset. This entailed a rapid increase in volatility months before the crisis, and when
the crisis erupted, the volatility of gold dropped instead of increasing, as most agents already had
positions in this asset.

Date 04/1993-09/1993 02/1994-11/1994 09/1999-10/1999 03/2000-12/2000

Event Inflation expectations Interest rates up Uncertainty dot-com crash

µt -1.27 to 0.00 -0.89 to -1.92 -1.35 to 0.5 0.05 to -0.92

From the above, it appears that gold level jumps seem to anticipate periods of crisis, in contrast
to the volatility of other commodities which react primarily during periods of crisis. This idea is
reinforced in the following table, for the periods prior to the 2008 financial crisis and the European
debt crisis that intensified in 2012. Higher volatility is observed during the periods preceding these
crises. This would indicate that the largely private operators, while not anticipating the crisis,
did perceive a scenario of high-risk to their financial positions and therefore chose to use gold as a
safe-haven, causing a sudden increase in its price and thus in the level of volatility. This pattern is
repeated in the three crisis periods analyzed; that is, the level-shifts component anticipates periods
of crisis. A study of this component as a predictor of the business cycle is beyond the scope of this
research, but an interesting advantage of the method used is that it enables better analysis of the
changes in volatility in relation to periods of crisis.

Date 10/2007-08/2008 09/2008-02/2009 08/2011-10/2011 01/2012-10/2012

Event Uncertainty Financial crisis Uncertainty European debt-crisis

µt -0.20 to 1.22 1.24 to 1.11 -0.47 to 1.10 0.17 to -0.71

In Figure 9 (see also Table 3), we find posterior distributions and the correlograms for the draws.
This index has a particular result in the parameter φ because its posterior mean is 0.078. This is
the lowest value for the parameter φ and is close to zero, so the short-memory component has no
persistence at all. Also, the volatility of the gold index has the largest probability of shifts of our
six indexes. Posterior mean of p is 0.00684 or in terms of duration of the shift, it occurs every 146
days; this is the reason why we found so many shifts in this series. Another important result is
that related to the parameter σν that has the posterior mean value of 0.822, very high compared
to the rest which have maximums of 0.15. This parameter gives us the variance of the shock to the
short-memory component, so it implies that this component is very volatile for gold. In Figure 8,
we find that gold undergoes many shifts during our period of analysis. Also, we report the ACF
of posterior draws, where it can be seen that almost all parameters do not have autocorrelation
problems with the exception of p, which falls to zero very slowly. We find that the ACF of p is
sensitive to prior specification. For example, we explore a sensitivity analysis for the gold index,
similar to that reported in Table 4 for the commodity index, and for some prior values the ACF
converges rapidly to zero, while for others it does not.
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4.1.4 Oil

In Panel a) of Figure 10 we show the series of oil price returns, and the level-shift component and
the log volatility are represented in Panel b). The results are close to the ones obtained for the
commodity index, which is to be expected because oil is the main component of the general index.
There have been three major shifts in the evolution of oil volatility: first, the jump in volatility
due to the “oil glut”of 1985 to 1986; second, the jump related to the Gulf War of 1990 to 1991;
and finally, the period of high volatility during the international financial crisis of 2008. Just as we
reviewed the impact of the Gulf War period in our analysis of the commodity index, now we will
to look at the oil glut of the mid-1980s as well as the last financial turmoil. As regards the former,
the table below shows the behavior of the level-shift component µt from 1985 to 1986. Almost right
throughout 1985, the level of volatility remained low (around 0.16). In parallel, many negotiations
between OPEC members were carried out in order to regulate overproduction. However, these
negotiations failed and in December of 1985 a price war began, causing prices to fall by more
than 50% over the next three months. High volatility was exacerbated by the Iraq-Iran war, and
continued until August 1986 when OPEC finally came to an agreement.

Date 04/26/85-12/03/1985 12/04/85-01/22/1986 01/23/86-08/13/1986 08/14/86-10/01/1986

Event Negotiations Price war Price war OPEC Agreement

µt 0.16 1.88 2.13 to 2.70 0.84

In our above examination of the commodity index during the last financial crisis, the probabil-
ities of jumps was under 0.5, and in that case we argue that a possible explanation for this may
be the mix of commodities with different volatility paths. This is also the case of oil, where, as
opposed to gold, level shifts occurred on differences dates, and as we can see in Panel c) of Figure
10 they have a strong probability of occurring at the beginning and the end of a crisis. The level
of volatility prior to crisis is estimated at 1.23, and was relative stable from the beginning of the
2000s. But it underwent a big jump a few weeks before the Lehman Brothers bankruptcy and
stayed high six months after the crash (see Table below). This “long”period of high volatility was
consistent with other commodities and with the estimations of Qu and Perron (2013) for the S&P
500 Index, and reflects the magnitude of the last financial crisis in comparison to previous crises.

4.1.5 Agriculture

In Figure 11 (see also Table 3) we show the posterior distributions of parameters. The posterior
mean of probability p has a value of 0.00178, which implies a shift every 562 days. That is to say,
level shifts are rare events, but when it happens, its variance σ2η is ten times higher than the variance
of the short-memory volatility component σ2v. Another important feature is the autoregressive
estimator, which is 0.942, implying a half-life cycle of 12 days, very close to the cycle of industrial
metals. As with other commodities, persistence of volatility is manifested through high values of φ,
but lower than 1. These findings are the opposite of Vivian and Wohar (2012) who assume a long-
memory process, but in accordance with Charles and Darné (2014) who include structural changes
in the behavior of volatility. The ACF reported in panels f) to i) present some autocorrelation
problems. Similarly to the case of gold, the ACF is sensitive to prior specification, but this does
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not affect the estimation of volatility. The agriculture index is constructed with information on the
following commodities: wheat, corn, soybeans, coffee, sugar, cocoa, and cotton. The majority of
these commodities are import products for Peru with the remarkable exception of coffee, which is
an important export for that country.

In Figure 12, we can observe that shifts are rare and the model identifies three major shifts
that increased volatility, which coincides with the specific context of agriculture commodities. In
1988, the volatility of the index increased dramatically between May and August of that year. This
volatile period was related to the drought conditions in the United States, which caused an increase
in the prices of wheat, corn and soybeans produced in that country. The increases in volatility are
identified by the shift component of the model, which rose from −0.52 to 1.18 in May of 1988
and stayed there for three months before dropping to −0.46 at the end of August of that year, as
observed in the Table below.

Date 03/09/1988-05/12/1988 05/13/1988-08/30/1988 08/31/1988

Event Low volatility Drought Low volatility

µt -0.52 1.18 -0.46

In 2007, the model identified two major shifts coinciding with the world food-price crisis, marked
by prices increases of these commodities for different reasons, such as financial speculation and the
use of food for fuel. On March 30, 2007, the level-shift component rose from 0.03 to 0.46 and
remained at that level until May 18, when other high shifts increased that component to 0.92.
After that period, the model identified a regime where the level-shift component stayed at high
levels of between 0.93 to 0.73 from May 2007 to October 2012. However, our model shows that the
long period of high volatility in food prices came to an end in October 2012, which ushered in two
major downward shifts that saw the level-shift component move to 0.40 and −0.02, respectively.

Date 07/28/06-03/29/2007 03/30/07-05/17/2007 05/18/07-10/01/2012 10/02/2012 10/22/2012

Event Low volatility Speculation Low volatility

µt 0.03 0.46 0.92 to 0.73 0.40 -0.02

In Figure 13 (see also Table 3), we can find the posteriors distributions and correlograms of
the draws for the 4 parameters. The probability p has a posterior mean of 0.00099 which is very
different from the prior of 1/41 and indicates that the probability of shifts is very low. This implies
that on average a shift occurs every 1010 days. Also, we find that parameter φ is 0.973 where
the implicitly half-life cycle of short-memory component is 25 days, doubling the size of industrial
or oil volatilities. As to the variances of volatility components, we find a posterior mean of ση
equal to 1.65, and for σν the posterior mean is 0.12. Similarly to other indexes, the variance of the
level-shift component is ten times higher than the variance of the short-memory component. In
general, estimators behave according to expectations, as do draws of posterior distributions do not
present problems of serial correlation. As shown in panels f) to i), the ACF decays to a maximum
of zero in 50 periods for all parameters.
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4.1.6 Livestock

Finally, the analysis of Livestock volatility will not be so exhaustive because it is not of central
importance to the external trade of Peru. The results can be found in Figure 14, where it is ob-
served that livestock volatility stays constant in perfectly identified regimes of volatility. Livestock
volatility exhibits the lowest number of shifts in volatility. The posterior parameters can be found
in Figure 15 and in Table 3 and reinforce the results observed in the evolution of the series. We find
that the posterior mean of p is 0.00081, which is the lowest value for all of the probabilities of shifts
in our series. What is more, the lowest value of the confidence interval of probabilities p is 0.00016,
which is very close to zero. On average, a shift is expected every 1234 days, so shifts are very rare.
Also, the parameter φ has a value of 0.977; thus we have more persistence for the short-memory
component of the volatility than for other commodities, with an implicit half-life cycle of 30 days.
In this case, the short-memory component has the lowest variance (σv = 0.076) in comparison with
other indexes, while the variance of the level-shift component is twenty times higher. Although level
shifts are very uncommon events, they impregnate high variation in volatility. As regards the serial
correlation of draws, only the ACF of ση holds in bandwidths.

4.2 Contributions to the Overall Variation in Volatility

The model has the particular feature of splitting the global volatility in two components: a level
shifts and a short-memory component. If we contend that this model can replicate empirical
features of the data, we must analyze whether this decomposition is significant. To this end, we
divide the contributions to overall volatility following Qu and Perron (2013): st = µt + ht with
st being the overall volatility, µt and ht are the level shifts and the short-memory components,
respectively. If we denote the sample means of the correspondent processes by s, µ and h , then
we obtain (st − s) = (µt − µ) + (ht − h), so the following ratios

n∑
i=1
(µt − µ)2

n∑
i=1
(st − s)2

and

n∑
i=1
(ht − h)2

n∑
i=1
(st − s)2

,

give us the contributions of µt and ht to the global variation in volatility of our indicators. Qu
and Perron (2013) find that the level-shifts component is more important than the short-memory
component in explaining the variations in volatility of the S&P 500 and Nasdaq daily returns.

Table 5 outlines our results for the six indexes and finds similar results to Qu and Perron (2013)
for all cases except for livestock volatility. The level-shifts component goes a long way to explaining
the variation in volatility. The maximum contribution of the level-shift component to volatility is
0.84, and corresponds to industrial metals. The gold index and commodities index level-shifts
components closely follows Industrial metals in contribution to the overall variation in volatility.
Those volatilities have different evolutions as observed in Section 4.1, but what they have in common
is that accounting for level-shift components is relevant for volatility modelling. The agriculture
level-shifts component accounts for 54 percent of the variation in volatility, which is significant but
less than the others. This is similar to what is observed for livestock volatility, and these are the
cases where the level-shift component explains the lower variation in volatility. However, as seen
before, it explains more than 50% percent of volatility with not many shifts. Finally, the oil index
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has the same results as the commodities index because it is the main component thereof and has
many shifts, though less than gold.

With this measurement, we can conclude that variation in volatility can be better predicted
with the level-shifts component; this is less volatile than the short-memory component, which is
a noisy process. Therefore, commodities volatilities can be better predicted and analyzed with a
level-shifts framework instead of a long-memory analysis.

4.3 Business Cycle Comovements

An important aspect of commodities index volatility is the presence of comovements with business
cycle indicators in small and commodity-exporting economies like Peru. We estimate the correlation
between components of commodity-return volatility and some indicators of the Peruvian economy
using common regressions. The indicators used are cement consumption, electricity production,
expectations of the economy,12 and money supply, because these are observed constantly by private
and government analysts in Peru. Also, we measure the correlations obtained between volatility
of commodities with some indicators of production: total and sectorial gross domestic product
(GDP), where the sectors analyzed are agriculture, mining, construction, and manufacture.

The data is obtained from the Central Bank of Peru in monthly frequencies. Thus, we adapt
our results of the level-shifts component, short-memory component, and the overall volatility of
the series to monthly data, with monthly averages. After the transformation of frequency, we
get the correlations with the interannual variation of the business cycle indicators. The results
are presented in Table 6. First, all commodity-price volatilities are correlated with business cycle
indicators, but not in the same direction. Industrial minerals and oil volatility present a positive
correlation, and gold a negative one. This may be explained by the correlation between financial
markets and gold volatility, while some periods of high volatility in industrial minerals or oil have
been linked to the commodities boom. Second, only gold is a significant variable in explaining
expectations, which suggests the relevance of gold volatility as an indicator of financial stability
and therefore of outcome performance in the future.

It is to be expected that industrial metals and oil will be highly correlated to business cycle
indicators, and this is the case for the indicators of cement consumption of cement consumption
and electricity production. Also, we get some spurious correlations of the agriculture and livestock
indexes volatilities with those indicators because they are not expected to affect or to be affected
by the Peruvian business cycle.

In addition, we obtain some correlations with GDP indicators. Agriculture volatility is corre-
lated positively with total GDP and agriculture GDP. Moreover, Industrial metals and oil volatilities
are highly correlated with total, manufacturing, and construction GDP, while the correlations with
mining GDP are not high but still significant. Gold volatility does not present a correlation with
total and mining GDP. Finally, the volatility of the index of all commodities shows correlations
with total and all-sector GDPs because it is mainly composed of oil and industrial metal indexes.

When we analyze the correlations for all the components, we find that the short-memory compo-
nent ht has no correlation at all with the indicators of the business cycle. The level-shifts component

12Expectations indicator constructed the Central Bank of Peru.
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accounts for all the correlation that the volatility of commodities index has with economic activity
indicators. These could be interpreted as meaning that the level-shifts component captures macro-
economic drivers behind volatility, while the short-memory component accounts for the noise of
daily activity in commodities markets.

4.4 Analysis of Residuals

One way of observing whether the model fits our analysis of the data well is by studying the
behavior of residuals. From Equation (1) we find that xt = exp(µt/2 + ht/2)εt and the series xt,
ht and µt are outputs from the estimation and filtering. Hence, ε̂t could be extracted directly from
our results as an estimation of εt. The assumptions are that εt is i.i.d. with Normal distribution.
Therefore, we can observe whether the standardized estimated residuals ε̂t behave as Gaussian and
are independent by applying some well known graphical analysis.

The QQ plots are used to ensure that our residuals approximate a random variable with Normal
distribution. To analyze independence in estimated residuals we can study the ACF of residuals
and squared residuals. However, as the returns do not exhibit autocorrelations, we only need to
determine whether our measurements of volatility of the residuals present autocorrelations. The
results presented include the Figures of the ACFs obtained from the log-squared residuals εt.

Figures 16 and 17 present the results of the residual analyses of Commodity, Industrial metals,
gold, oil, agriculture, and livestock indexes, respectively. All of the series have the characteristic
that their estimated residuals ε̂t do not exhibit significant autocorrelation in their log-squared and
absolute values13. The values of the autocorrelation are in general less than 0.05, and are inside
the Bartlett windows.

On the other hand (see Figure 17), each of the series do not have the same QQ plot results.
Estimated standardized residuals for Agriculture and Livestock present the best QQ-plots results
in the sense that their estimated distribution approximates the standard Normal distribution more.
However, Gold index residuals do not have the same behavior. They exhibit large fat tails that
indicate the presence of large shocks, even though we include the level-shifts component. This is
not in fact surprising, because the gold index is the most volatile of all the six indices analyzed.
Finally, industrial metal, oil, and overall commodities indices exhibit reasonable QQ-plots results.

5 Conclusions

This study models the volatility of the commodities indexes of the S&P GSCI following the method-
ology of Qu and Perron (2013), which includes random level shifts in the SV model of Kim, Shep-
hard, and Chib (1998).

The main results seem to confirm the relevance of shifts in the volatility of the studied series.
After considering these breaks, the alleged long-memory disappears and volatility converges to its
mean in a short period of time. The persistence of the short-memory component is lower than one
so the average life of a shock reduces compared to standard SV models. However, the exception is
the livestock index, which presents extremely rare shifts, and these shifts do not explain variations
in volatility. Moreover, the persistence of its noise component is close to one. Despite these results,

13The ACF of absolute value of residuals has also been performed but not reported; the results indicate no problems
of serial correlation. They are available upon request.
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the livestock index is not so important to Peruvian trade. Likewise, the gold index has different
results because it exhibits so many shifts and the parameter φ is close to zero.

Shifts are rare in volatilities but they account for most of their variation for all commodity
indexes. It is not important that gold has more shifts than industrial metals or oil more than
agriculture; in all cases, the level-shift component is significant in volatility modelling.

The analysis of residuals shows that autocorrelation in the log-squared and absolute-value of
standardized residuals disappears. This means that the model captures all of the second-moment
autocorrelations of the series. The QQ plot gives us similar results, with the standardized residuals
being close to the Normal distribution as assumed by the model, with the exception of the gold
index which has fat tails.

Finally, we find that the components of level shifts in the volatility of commodity prices are
strongly correlated with indicators of the Peruvian economic cycle, such as capital goods imports,
expectations of the economy, electricity production, and internal cement consumption. However,
Livestock index and Agriculture index are the exception, as they do not account for much of the
international trade of Peru. Not only that, if we include indicators of sectorial gross domestic
product, the volatility is still highly correlated with interannual variations of these indicators.

With the new estimated parameters, we can construct better measurements of risk for the
commodities prices to help private companies, or to create special government funds in order to
avoid being affected by highly volatile prices of traded commodities.
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Table 1. Composition of SP GSCI

Weight Included Commodities

Energy 69.8% -

- Oil 67.2% -

- Natural Gas 2.6% -

Industrial Metals 6.7% -

- Copper 3.2% -

- Others 3.5% Aluminum, Lead, Nickel and Zinc

Precious Metals 3.3% -

- Gold 2.8% -

- Silver 0.5% -

Agriculture 15.3% Wheat, Corn, Soybeans, Coffee, Sugar, Cocoa, Cotton

Livestock 4.9% Lean Hogs, Live Cattle, Feeder Cattle

Source: S&P GSCI Methodology, 2014.
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Table 2. Test Against Spurious Long Memory

d̃ (local Whittle) W (ε = 0.02) W (ε = 0.05)

Commodity Index 0.37 2.14∗∗ 2.14∗∗

Copper 0.41 2.03∗∗ 1.63∗∗

Gold 0.37 1.56∗∗ 1.37∗

Oil 0.34 2.03∗∗ 2.03∗∗

Agriculture 0.34 1.84∗∗ 1.84∗∗

Livestock 0.24 2.12∗∗ 1.79∗∗

H0: series is a stationary long-memory process, H1: series is affected by regime change or a smoothly
varying trend.
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Table 3. Posterior Estimates for Commodities Indexes volatilities

Parameters

Index p φ

Posterior Mean 95% credible set Posterior Mean 95% credible set

Commodity Index 0.00149 [0.00068, 0.00258] 0.948 [0.913, 0.971]

Agriculture 0.00099 [0.00035, 0.00198] 0.973 [0.960, 0.983]

Livestock 0.00081 [0.00016, 0.00177] 0.977 [0.959, 0.992]

Industrial Metals 0.00292 [0.00166, 0.00451] 0.932 [0.902, 0.960]

Oil 0.00178 [0.00079, 0.00319] 0.942 [0.914, 0.964]

Gold 0.00684 [0.00461, 0.00949] 0.078 [0.012, 0.177]

Parameters

Index σν ση

Posterior Mean 95% credible set Posterior Mean 95% credible set

Commodity Index 0.145 [0.107, 0.195] 1.649 [1.273, 2.157]

Agriculture 0.123 [0.101, 0.147] 1.650 [1.260, 2.187]

Livestock 0.076 [0.056, 0.104] 1.645 [1.245, 2.213]

Industrial Metals 0.152 [0.118, 0.189] 1.479 [1.177, 1.891]

Oil 0.168 [0.133, 0.206] 1.652 [1.271, 2.147]

Gold 0.822 [0.773, 0.878] 1.267 [1.064, 1.531]
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Table 4. Posterior Means for Commodity Index Volatility Under Different
Priors

(a) Vary γ1

Parameter γ1 = 0.25 γ1 = 4

Posterior Mean 95% credible set Posterior Mean 95% credible set

p 0.00146 [0.00068, 0.00265] 0.00216 [0.00108, 0.00352]

φ 0.945 [0.915, 0.967] 0.948 [0.916, 0.970]

σν 0.147 [0.113, 0.186] 0.140 [0.108, 0.181]

ση 1.626 [1.264, 2.143] 1.610 [1.242, 2.112]

(b) Vary γ2

Parameter γ2 = 60 γ2 = 960

Posterior Mean 95% credible set Posterior Mean 95% credible set

p 0.00180 [0.00089, 0.00304] 0.00129 [0.00060, 0.00222]

φ 0.933 [0.887, 0.963] 0.952 [0.929, 0.970]

σν 0.158 [0.117, 0.212] 0.144 [0.114, 0.179]

ση 1.566 [1.226, 2.018] 1.628 [1.266, 2.134]

(c) Vary σ∗r

Parameter σ∗r = 10 σ∗r = 40

Posterior Mean 95% credible set Posterior Mean 95% credible set

p 0.00138 [0.00063, 0.00236] 0.00170 [0.00076, 0.00302]

φ 0.936 [0.895, 0.965] 0.942 [0.911, 0.968]

σν 0.159 [0.115, 0.210] 0.149 [0.111, 0.197]

ση 2.026 [1.487, 2.794] 1.217 [1.000, 1.491]

(d) Vary S∗σ

Index S∗σ = 30 S∗σ = 120

Posterior Mean 95% credible set Posterior Mean 95% credible set

p 0.00162 [0.00072, 0.00287] 0.00131 [0.00060, 0.00224]

φ 0.951 [0.917, 0.975] 0.949 [0.917, 0.970]

σν 0.140 [0.105, 0.191] 0.145 [0.113, 0.190]

ση 1.271 [0.969, 1.664] 2.195 [1.702, 2.870]
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Table 5. Contributions to overall volatility

Component

Index Level Shift Stationary

Commodities 0.81 0.14

Agriculture 0.54 0.35

Livestock 0.52 0.36

Industrial Metals 0.84 0.10

Oil 0.70 0.23

Gold 0.80 0.17

Note: The contributions are obtained from the decomposition st = µt + ht where µt corresponds to the level
shifts component while ht is the stationary component. The contributions to the overall volatilities are obtained

from the following:
∑n
i=1(µt−µ)2∑n
i=1(st−s)2

and
∑n
i=1(ht−h)2∑n
i=1(st−s)2
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Table 6. Comovements between Volatility Components and Business Cycle
Indicators

Panel (a). Agriculture Index

µt ht µt+ht

Variables Coeffi cient R2 Coeffi cient R2 Coeffi cient R2

(t-stat) (t-stat) (t-stat)

Consumption of Cement 10.64 0.16 -0.67 0.00 5.89 0.09

(6.70) (-0.29) (4.68)

Production of Electricity 3.82 0.06 0.21 0.00 2.26 0.04

(3.72) (0.15) (2.88)

Expectations of the economy 4.18 0.01 -22.16 0.09 -2.51 0.00

(1.04) (-3.47) (-0.77)

Money Supply -2.17 0.00 0.28 0.00 -1.13 0.00

(-0.63) (0.06) (-0.44)

GDP 7.37 0.45 2.09 0.01 5.34 0.36

(9.95) (1.24) (8.21)

Agriculture production 4.59 0.16 3.56 0.03 3.84 0.17

(4.71) (2.02) (4.89)
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Table 6 (continued). Comovements between Volatility Components and Business Cycle
Indicators

Panel (b). Industrial Metals Index

µt ht µt+ht

Variables Coeffi cient R2 Coeffi cient R2 Coeffi cient R2

(t-stat) (t-stat) (t-stat)

Consumption of Cement 9.35 0.25 4.26 0.01 8.33 0.23

(8.63) (1.16) (8.27)

Production of Electricity 4.42 0.15 2.01 0.00 3.94 0.14

(6.32) (0.90) (6.09)

Expectations of the economy 0.63 0.00 -14.11 0.01 -0.27 0.00

(0.23) (-1.33) (-0.10)

Money Supply 5.97 0.02 6.52 0.00 5.73 0.02

(2.39) (0.90) (2.49)

GDP 5.62 0.56 -1.13 0.00 4.91 0.48

(12.29) (-0.42) (10.52)

Mining GDP 1.69 0.05 4.25 0.02 1.75 0.06

(2.50) (1.59) (2.75)

Manufacturing GDP 6.30 0.31 -2.88 0.00 5.40 0.26

(7.37) (-0.72) (6.48)

Construction GDP 10.91 0.44 1.31 0.00 9.73 0.39

(9.60) (0.22) (8.76)
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Table 6 (continued). Comovements between Volatility Components and Business Cycle
Indicators

Panel (c).Gold Index

µt ht µt+ht

Variables Coeffi cient R2 Coeffi cient R2 Coeffi cient R2

(t-stat) (t-stat) (t-stat)

Consumption of Cement -1.82 0.02 7.33 0.00 -1.71 0.02

(-2.00) (0.76) (-1.90)

Production of Electricity -2.42 0.08 7.99 0.01 -2.29 0.08

(-4.54) (1.37) (-4.34)

Expectations of the economy -20.75 0.17 15.56 0.00 -19.16 0.15

(-5.12) (0.46) (-4.84)

Money Supply -14.37 0.28 1.01 0.00 -14.02 0.27

(-9.77) (0.05) (-9.60)

GDP 0.67 0.00 -0.43 0.00 0.62 0.00

(0.60) (-0.05) (0.58)

Mining production 2.45 0.04 7.16 0.01 2.39 0.04

(2.23) (0.78) (2.25)
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Table 6 (continued). Comovements between Volatility Components and Business Cycle
Indicators

Panel (d). Oil Index

µt ht µt+ht

Variables Coeffi cient R2 Coeffi cient R2 Coeffi cient R2

(t-stat) (t-stat) (t-stat)

Consumption of Cement 4.71 0.19 -7.32 0.02 4.01 0.15

(7.37) (-2.34) (6.36)

Production of Electricity 4.72 0.53 -1.68 0.00 4.28 0.47

(15.85) (-0.88) (14.13)

Expectations of the economy -0.82 0.00 -18.78 0.03 -1.55 0.00

(-0.41) (-1.98) (-0.80)

Money Supply 12.58 0.30 -4.17 0.00 11.25 0.26

(10.35) (-0.70) (9.45)

GDP 4.40 0.60 -3.26 0.02 4.04 0.54

(13.48) (-1.35) (11.74)

Mining production 2.13 0.14 0.21 0.00 2.03 0.13

(4.39) (0.09) (4.28)

Manufacturing production 5.14 0.37 -7.65 0.04 4.56 0.31

(8.35) (-2.14) (7.24)

Construction production 7.93 0.41 -10.49 0.03 7.09 0.34

(9.04) (-1.99) (7.87)
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Table 6 (continued). Comovements between Volatility Components and Business Cycle
Indicators

Panel (e).Commodities Index

µt ht µt+ht

Covariables Coeffi cient R2 Coeffi cient R2 Coeffi cient R2

(t-stat) (t-stat) (t-stat)

Consumption of Cement 5.62 0.09 -6.35 0.02 3.62 0.05

(4.59) (-1.98) (3.28)

Production of Electricity 5.27 0.20 -3.57 0.01 3.69 0.13

(7.61) (-1.83) (5.75)

Expectations of the economy -1.19 0.00 -35.84 0.11 -4.10 0.02

(-0.38) (-3.96) (-1.46)

Money Supply -1.67 0.00 -0.63 0.00 -1.43 0.00

(-0.68) (-0.10) (-0.65)

GDP 5.53 0.40 -0.73 0.00 4.38 0.31

(8.84) (-0.30) (7.30)

Agricultural production 3.56 0.15 0.16 0.00 2.87 0.12

(4.53) (0.06) (4.01)

Mining production 2.58 0.08 4.13 0.02 2.43 0.09

(3.32) (1.70) (3.51)

Manufacturing production 6.20 0.22 -5.71 0.02 4.48 0.14

(5.84) (-1.59) (4.49)

Construction production 10.41 0.29 -5.93 0.01 7.84 0.21

(6.99) (-1.12) (5.55)
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Figure 4. Results for Commodity Index Volatility
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Figure 5. Posterior Estimates for Commodity Index Volatility
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Figure 7. Posterior Estimates for Industrial Metals Index Volatility
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Figure 8. Results for Gold Index Volatility
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Figure 9. Posterior Estimates for Gold Index Volatility
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Figure 10. Results for Oil Index Volatility
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Figure 11. Posterior Estimates for Oil Index Volatility
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Figure 12. Results for Agriculture Index Volatility
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Figure 13. Posterior Estimates for Agriculture Index Volatility
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Figure 15. Posterior Estimates for Livestock Index Volatility
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