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An Empirical Application of a Random Level Shifts Model with
Time-Varying Probability and Mean Reversion to the Volatility of

Latin-American Forex Markets Returns

José Carlos Gonzáles Tanaka Gabriel Rodríguez
Pontificia Universidad Católica del Perú Pontificia Universidad Católica del Perú

Abstract

Following Xu and Perron (2014), this paper uses daily data for six Forex Latin American markets.
Four models of the family of the Random Level Shift (RLS) model are estimated: a basic model
where probabilities of level shift are driven by a Bernouilli variable but probability is constant; a
model where varying probabilities are allowed and introduced via past extreme returns; a model with
mean reversion mechanism; and a model incorporating these two features. Our results prove three
striking features: first, the four RLS models fit well the data, with almost all the estimates highly
significant; second, the long memory property disappears completely from the ACF, including the
GARCH effects; and third, the forecasting performance is much better for the RLS models against
an overall of four competitor models: GARCH, FIGARCH and two ARFIMA models.

JEL Classification: C22, C52, G12.

Keywords: Random Level Shifts, Long memory, Forex Return Volatility, Latin American Forex
Markets, Time Varying Probability, Mean Reversion, Forecasting.

Resumen

Siguiendo el trabajo de Xu y Perron (2014), este documento utiliza datos diarios de volatilidades de
retornos cambiarios para seis mercados de América Latina. Cuatro modelos del tipo Random Level
Shifts (RLS) son estimados: un modelo básico donde las probabilidades de cambios de nivel son
gobernadas por una variable del tipo Bernouilli pero dicha probabilidad es constante; un modelo
donde las probabilidades son cambiantes en el tiempo y dependen de los retornos bursátiles extremos
negativos del periodo anterior; un modelo con reversión a la media; y un modelo que incorpora
los dos aspectos mencionados anteriormente. Los resultados sugieren tres importantes aspectos: el
primero es que los cuatro modelos RLS ajustan bien los datos con prácticamente todos los estimados
altamente significativos; segundo, la característica de larga memoria desaparece completamente de
la ACF, incluyendo los efectos GARCH; y, tercero, la performance de los cuatro modelos en términos
de predicción es buena contra diferentes modelos rivales como los modelos GARCH, FIGARCH, y
dos modelos ARFIMA.

Clasificación JEL: C22, C52 G12.

Palabras Claves: Cambio de Nivel Aleatorios, Larga Memoria, Volatilidad de Retornos Cam-
biarios, Mercados Cambiarios en América Latina, Probabilidad Variante en el Tiempo, reversión a
la Media, Predicción.



An Empirical Application of a Random Level Shifts Model with
Time-Varying Probability and Mean Reversion to the Volatility of

Latin-American Forex Markets Returns1

José Carlos Gonzáles Tanaka Gabriel Rodríguez
Pontificia Universidad Católica del Perú Pontificia Universidad Católica del Perú

1 Introduction

A sizeable branch of the econometric literature on time series argues that financial asset return
volatilities exhibit long-term dependence. In formal terms, the definition of the long memory
property is consistent with the notion that a time series has an autocorrelation function (ACF)
that slowly decays in its lags; or equivalently, if its spectral density function has an infinite value at
the frequency of zero. Another branch of the literature has proposed that long-memory behavior is
spurious and due to the presence of rare level shifts. This idea extends that exposed by Perron (1989)
who showed that structural change and unit roots are easily confused: when a stationary process
is contaminated by structural changes, the estimate of the sum of its autoregressive coeffi cients is
biased toward 1 and tests of the null hypothesis of a unit root are biased toward non-rejection.
This phenomenon has been shown to apply to the long-memory context as well. That is, when
a stationary short-memory process is contaminated by structural change in levels, the estimate of
the long-memory parameter is biased away from 0 and the autocovariance function (and the ACF)
of the process exhibits a slow rate of decay. Relevant references on this issue include Diebold and
Inoue (2001), Engle and Smith (1999), Gourieroux and Jasiak (2001), Granger and Ding (1996),
Granger and Hyung (2004), Lobato and Savin (1998), Mikosch and Stărică (2004a,b), Parke (1999)
and Teverovsky and Taqqu (1997).

Recently, Lu and Perron (2010) directly estimate a structural model where the series of interest
is the sum of a short-memory process and a jump or level shift component. This model is named
the random level shift (RLS) model. In its basic specification, the probability of level shifts are
considered constant. This model has been recently extended by Xu and Perron (2014) in order to
allow for time varying probabilities for the level shifts and the introduction of a mean reversion
mechanism. According to the RLS models (any of them), if the level shifts are taken into account,
the presence of long memory disappears implying that the presence of long memory in standard
models is spurious. Similar evidence applies to the presence of GARCH effects.

The presence of genuine long memory means that volatility has high persistence and shocks to
this variable have lasting effects. In the RLS models, only the shocks that have permanent effects
are the level shifts and the rest is a component of short memory. On the other hand, the level
changes are important in themselves because they are associated with domestic or foreign financial
crises or even to domestic issues affecting financial markets (such as electoral processes as in the
case of Latin American countries).

1This paper is drawn from the Thesis of José Carlos Gonzáles Tanaka, Department of Economics, Pontificia
Universidad Católica del Perú. We thank useful comments from Paul Castillo (Central Reserve Bank of Peru),
Jiawen Xu (Shangai University of Finance and Economics), Zhongjun Qu and Pierre Perron (Boston University),
Jorge Rojas (PUCP) and Patricia Lengua Lafosse (PUCP). Any remaining errors are our responsibility.
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Our perspective is that there are enough episodes of turbulence in Forex markets in Latin Amer-
ica to support the use of the RLS models. In addition, empirical evidence for Latin American Forex
markets is very scarce. In that sense, the contribution of this paper is fundamentally empirical.
Our results may be summarized as follows: (i) the four RLS models fit well; (ii) the presence of level
shifts is sporadic or rare but still significant; after taking this into account for these observations,
no evidence of long memory is appreciated in the ACFs; (iii) there is no fractional integration
evidence; and (iv) good performance of the RLS models in terms of forecasting for short, medium
and long horizons.

The paper is structured as follows. Section 2 presents a brief revision of the literature. Section 3
presents the basic RLS model and describes the two extensions proposed by Xu and Perron (2014).
In order to gain fluency and continuity in the text, a brief description of the estimation algorithm
is relegated to the Appendix. Section 4 deals with the data and the results of the estimation of
the different models. Moreover, a comparison with the ARFIMA(p,d,q), GARCH and Components
GARCH (CGARCH) models is presented. Section 5 shows the prediction results, while Section 6
discusses the main conclusions.

2 Brief Literature Revision

The literature provides us with several possible formalizations for this definition; see McLeod
and Hipel (1978), Taylor (1986), Dacarogna et al. (1993), Ding et al. (1993), Beran (1994),
Robinson (1994), and Baillie (1996), among others. Following notations and definitions in Perron
and Qu (2010), let {x}Tt=1 be a time series that is stationary with spectral density function fx(ω)
at frequency ω, so xt has long memory if fx(ω) = g(ω)ω−2d, for ω → 0, where g(ω) is a smooth
variation function in a vicinity of the origin, which indicates that for all real numbers t, it is proved
that g(tω)/g(ω) → 1 for ω → 0. When d > 0, the function of the spectral density increases
for frequencies increasingly close to the origin. The infinite rate that is divergent depends on the
parameter value d. Besides, let γx(τ) be the ACF of xt, so xt has long memory if γx(τ) = c(τ)τ2d−1,
for τ → ∞, where c(τ) is a smooth variation function. When 0 < d < 1/2, the ACF decays at a
slow rate that will depend on the parameter value of d.

Granger and Joyeux (1980) and Hosking (1981) introduce the ARFIMA(p,d,q) model as a
parametric way of capturing long memory dynamics. There is also literature on semiparametric
estimators of the fractional parameter d where the most used estimators are the proposed by
Geweke and Porter-Hudak (1983) using the log-periodogram; see also Robinson (1995a), and the
the local Whittle estimator of Kunsch (1987) and Robinson (1995b); see also Andersen et al.
(2003). Another way to capture the long-memory behavior is by mixing it with GARCH effects,
as in the Fractional Integrated GARCH (FIGARCH) model proposed by Baillie et al. (1996).
In this model, the conditional variance of the process is assumed to have a slow hyperbolic rate
of decay due to the influence of lagged squared innovations. The main characteristic of all these
models is the assumption of long memory. Furthermore, Bollerslev and Mikkelsen (1996) propose
the FIEGARCH model. In both of these two models, the fractional parameter is significant and,
with the latter model, asymmetries are found in the series. In addition, Ding et al. (1993) conclude
that the ACF of the absolute value of the returns is greater than the ACF of the returns, especially
when d = 1. Besides, they propose the Asymmetric Power ARCH (APARCH) model in which they
allow the series to be affected by asymmetric impacts in the variable.

Lobato and Savin (1998) apply a semiparametric test, which proves to be robust when there is
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weak dependence, to detect the presence of long-range dependence in the daily returns and squared
returns of the S&P500 market. Since the null hypothesis is a short memory process, for the case
of the Stock returns the null is not rejected, while for the squared returns and the absolute value
of the returns the null is rejected. However, the authors state that the results may be spurious
due to the non-stationarity of the series in the squared returns: when they partitioned the sample
in two, with January of 1973 as a breakpoint, no evidence is found of structural break causing
long memory. Teverovsky and Taqqu (1997), present a method that could distinguish between the
effects of long memory and level shift. Gourieroux and Jasiak (2001) study the relationship between
the presence of long memory and infrequent breaks by estimating the correlogram rather than the
fractional parameter. They find that non-linear time series with sporadic breaks could have long
memory. On the other hand, Diebold and Inoue (2001) find that the long memory property and
the structural change phenomenon are related through the following models: the Markov-Switching
model of Hamilton (1989) and the simple mixture permanent stochastic breaks model of Engle and
Smith (1999). The authors’analysis shows that stochastic regime shifts are readily confused with
long memory, even asymptotically, once it is assured that the structural break probabilities are
small. Through Monte Carlo simulations, they argue that the confusion is not only a theoretical
issue, but a reality in empirical economic and financial applications.

Other authors like Granger and Hyung (2004) have found evidence that the fractionally inte-
grated models and the slow decay in the ACF are caused by infrequent breaks. Analytically, they
show that structural breaks cause bias in the fractional parameter estimated through the method of
Geweke and Porter-Hudak (1983), and that the ACF exhibits slow decay. To prove their analysis
empirically, they compare the fractional integration and structural break models to analyze the
absolute value of the daily S&P500 Stock returns from 1928 to 2002. They reach the conclusion
that the long-memory presence could be highly dependent on the breaks that occur in the sample.
Further analysis and evidence is found in Mikosch and Stărică (2004a, 2004b). See also Stărică and
Granger (2005).

Following the above path, Perron and Qu (2010) propose a model and methodology to discern
between level shifts and the long-memory property using the ACF, the estimates of the fractional
parameter d, and the periodogram. These authors establish a simple mixture model that integrates
a short-memory process with a random level shifts component affected by a variable of occurrence
related to a Bernoulli Process. They apply the so-called RLS model to the log-squared returns
of four major indices (AMEX, Dow Jones, NASDAQ and S&P500), concluding that their model
best describes the volatility behavior. Meanwhile, Lu and Perron (2010), and Li and Perron (2013)
apply the RLS model to the stock market and Forex returns, respectively. It is interesting to note
that after accounting for level shifts, no evidence of long memory remains present and so too are
GARCH effects eliminated. Xu and Perron (2014) extend the basic RLS model in two regards: (i)
by introducing a time-varying probability, and (ii) a mean reversion mechanism. A final model is
a mixture of these two models. By applying these different models to the above-mentioned data,
the results reinforce the above-mentioned results.

In the case of Latin American financial markets, the recent models have been applied to different
contexts. For example, Herrera Aramburú and Rodríguez (2014) opt for a testing approach to verify
whether Peruvian financial markets present long memory. A similar approach is used by Pardo
Figueroa and Rodríguez (2014). With respect to modelling, Ojeda Cunya and Rodríguez (2016)
have applied the basic RLS to the Peruvian financial markets while Rodríguez and Tramontana
(2015) have applied these tools to the Latin-American stock markets. The extended model proposed
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by Xu and Perron has been used by Rodríguez (2016) to analyze the stock markets in Latin America.
The results obtained are similar to the original proposals of Lu and Perron (2010), and Xu and
Perron (2014); that is, the artificial presence of long-memory behavior due to the (sporadic or rare)
presence of level shifts.

3 Methodology

This Section presents the Basic RLS model that considers a constant probability of level shifts.
Then, the two extensions to this model are presented. For non-specialized readers, the brief technical
details related to the method and algorithm of estimation are relegated to the Appendix.

3.1 The Basic RLS Model

Following Lu and Perron (2010), we use a simple mixture model, which is a combination of a short-
memory process and a level shift component that depends on a Bernouilli distribution. Following
same notation, the basic RLS is specified as follows:

yt = a+ τ t + ct, (1)

τ t = τ t−1 + δt,

δt = πtηt,

where a is a constant, τ t is the level-shift component, ct is the short-memory component, and πt is a
Bernouilli variable, which takes the value of 1 with probability α and the value of 0 with probability
(1−α). In this way, following the third expression in (1), when πt assumes the value of 1, a random
level shift ηt occurs with a distribution ηt ∼ i.i.d. N(0, σ2η). Note that the process δt can be
described as δt = πtη1t + (1− πt)η2t, with ηit ∼ i.i.d.N(0, σ2ηi) for i = 1, 2 and σ2η1 = σ2η, σ

2
η2

= 0.
The short-memory process (in its general form) is defined by the process ct = C(L)et, with et ∼ i.i.d.
N(0, σ2e) and E|et|r <∞ for values r > 2, where C(L) =

∑∞
i=0 ciL

i,
∑∞

i=0 i|ci| <∞ and C(1) 6= 0.
Moreover, it is assumed that πt, ηt and ct are mutually independent. Based on the results of
Lu and Perron (2010) and Li and Perron (2013), even when it would be useful to consider the
component et as a noise variable, in this paper we model this component as an AR(1) process, that
is, ct = φct−1 + et.2

3.2 Extensions to the Basic RLS Model

As pointed out in Xu and Perron (2014), level shifts usually occur in clusters in certain periods of
time related to financial crisis. This phenomenon of clustering indicates that level shifts are not
i.i.d., but that the probability of these shifts varies in accordance with economic, political, and
social conditions in the country.

Following on from the notation used in Xu and Perron (2014), the probability of level shift is
defined as pt = f(p, xt−1), where p is a constant and xt−1 are the covariables that help to better
predict the probability of level shifts. According to the study by Martens et al. (2004), there is a
strong relationship between current volatility and past returns, also known as the leverage effect.
This effect is modeled through the news impact curve proposed by Engle and Ng (1993) as follows:

2Note that this model can be extended to model the short-memory component as an ARMA(p,q) process. However,
the estimates show no statistical significance beyond an AR(1) process.
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log(σ2t ) = β0 + β11(rt−1 < 0) + β2|rt−1|1(rt−1 < 0), where σ2t represents the volatility and 1(A)
is the indicator function that takes the value of one when the event A occurs. Given that our
objective in this part of the study is not to model the volatility but the probability of level shifts,
the variable xt−1 is not represented by past returns (rt−1). Instead, extreme past returns that are
below a threshold κ will be used. Therefore, we employ the returns that belong to 1%, 2.5% and
5% of the distribution of the returns (κ = 1.0%, 2.5%, 5.0%). Thus, the probability of level shifts
is given by:

f(p, xt−1) =

 Φ(p+ γ11 {xt−1 < 0}+ γ21 {xt−1 < 0} |xt−1|) for |xt−1| > κ

Φ(p) other cases,

 , (2)

where Φ(.) is a function of Normal accumulated distribution, with which I ensure that f(p, xt−1)
is between 0 and 1.

The second extension of Basic RLS models is that level shifts occur around a mean; that is,
each time a level shift occurs and the volatility of the series increases, a similar change occurs
in the opposite direction, which makes the mean of the volatility remains at a given value. This
process of mean reversion is modeled as follows: η1t = β(τ t|t−1 − τ t) + η̃1t, where η̃1t is distributed
Normally with mean 0 and variance σ2η, τ t|t−1 is the estimated level shift component at time t, and
τ t is the mean of all level-shift components estimated from the start of the sample to time t. The
process of mean reversion occurs when β < 0 and this parameter represents the velocity at which
the volatility returns to its mean. The final model combines the two stated characteristics, giving
us four models to estimate.

4 Empirical Results

In this Section we briefly describe the data. We also analyze the results in terms of the presence
of both long-memory behavior and GARCH effects. We also conduct a forecasting comparison
exercise.

4.1 The Data

We use daily data for six Latin American Forex markets. The returns are calculated as rt =
ln(Pt)− ln(Pt−1) where Pt is the value of the exchange rate of the respective Latin America country
against the US dollar. Following recent literature (see Lu and Perron (2010), Li and Perron (2010),
and Xu and Perron (2010), among others), we model log-absolute returns3. When returns are zero
or close to it, the log-absolute transformation implies extreme negative values. Using the estimation
method described above, these outliers would be attributed to the level shifts component and would
thus bias the probability of shifts upward. To avoid this drawback, we bound absolute returns away
from zero by adding a small constant, i.e., we use yt = log(|rt|+0.001), a technique introduced to the

3Using this measure has two advantages: (i) it does not suffer from a non-negativity constraint as do, for example,
absolute or squared returns. In fact, it is a similar argument as that used in the EGARCH(1,1) model proposed by
Nelson (1991). The dependent variable is log(σ2t ) in order to avoid the problems of negativity when the dependent
variable is σ2t as in the standard GARCH models and other relatives models; (ii) there is no loss related to using
square returns in identifying level shifts since log-absolute returns are a monotonic transformation. It is true that
log-absolute returns are quite noisy, but this is not problematic since the algorithm used is robust to the presence of
noise.
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stochastic volatility literature by Fuller (1996). The results are robust to alternative specifications;
for example, using another value for this so-called offset parameter, deleting zero observations, or
replacing them with a small value.

With respect to the construction of the volatility series, several points should be noted. We use
daily returns as opposed to realized volatility series constructed from intra-daily high frequency
data, which has recently become popular. Even though it is true that realized volatility series
are a less noisy measure of volatility, their use would be problematic in the current context for
the following reasons: (i) these series are typically available only for a short span, whereas the
use of a long span is imperative in making reliable estimates of the probability of occurrence of
level shifts, given that level shifts are relatively rare; (ii) such series are available only for specific
assets, as opposed to market indices. In our framework, the intent of the level shift model is to
have a framework which allows for special events affecting overall Forex markets. Using data on
a specific asset would confound such market-wide events with idiosyncratic ones associated with
the particular asset used; (iii) we wish to re-evaluate the adequacy of GARCH models applied to
daily returns when taking into account the possibility of level shifts. Hence, it is important to have
estimates of these level shifts for squared daily returns which are equivalent to those obtained using
log-absolute returns.

The data sample is as follows: Argentina (02/01/2002-02/01/2014; 2958 observations), Brazil
(01/04/1999-02/07/2014; 3785 observations), Chile (01/04/1993-02/07/2014; 5282 observations),
Colombia (08/20/1992-02/07/2014; 5259 observations), Mexico (01/02/1992-02/07/2014; 5636 ob-
servations) and Peru (01/03/1997-07/02/2014; 4251 observations).

Table 1 sets out summary statistics of the volatility series and shows their unconditional dis-
tribution characteristics. The six Forex return volatility series have similar characteristics: mean,
standard deviation, and extreme values. All of them show a positive skewness; that is, a right-tailed
distribution, while Argentina has a markedly higher value than the other series. The kurtosis of
Brazil, Chile and Colombia are less than 3. However for the other countries, the results are greater.

Figure 1 illustrates the evolution and behavior of the Forex returns, and we observe that Ar-
gentina and Mexico have less turbulence than the other countries. A common characteristic among
all countries is the great variation of the returns in the financial crisis of 2008. Peru, in contrast to
the others, does not post big extreme values (negative or positive) as well as the other countries.
Figure 2 shows the well-known fact about the ACF of financial volatility series: long memory be-
havior. For all countries there is little accommodation of the confidence bands, which means all
values of the autocorrelations are significant. For more details about stylized facts in the Peruvian
Forex market, see Humala and Rodríguez (2013).

4.2 Results of the Estimations

Four models are estimated: The Basic RLS, the Threshold κ% RLS, The Mean Reversion RLS, and
the Modified RLS. The results of these models are presented in Table 2, 3, 4, and 5, respectively.

Table 2 presents the results from the estimation of the Basic RLS model. All parameters are
significant even at a level of significance of 1%. Argentina and Mexico clearly show a great dispersion
from the mean in the level shift, ση, unlike the other countries. The σe estimate is very similar
across all countries with the exception of Argentina and Peru, which have lower estimates. The
estimates of the AR(1) coeffi cient is significant only for Colombia, Mexico and Peru. The estimates
of the jump probability is close to 1.5% for all countries except for Mexico. Given this number and
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the sample size, we have the number of breaks for each country’s volatility: 44, 62, 45, 99, 17 and
71 for Argentina, Brazil, Chile, Colombia, Mexico, and Peru, respectively. For the last country, our
results are consistent with those found in Ojeda Cunya and Rodríguez (2016) even though we have
more observations. For the other countries, the estimates of the level shifts are in accordance with
those found by Rodríguez and Tramontana Tocto (2015).

In Table 3, we present the estimation results when a time-varying probability mechanism is
incorporated into the RLS model. For each series, we consider three different threshold levels
(κ% = 1%, 2.5%, 5%) in order to evaluate the robustness of our results. The estimate of ση clearly
shows great similarities for all the countries with respect to the Basic RLS; however, our second
model presents relatively smaller values.

When it comes to the estimates of p, the value estimated from the varying probability can be
converted to a constant probability that could resemble the value of the Basic RLS α. Accordingly,
our α that results from this constant for Argentina is 0.015, 0.017 and 0.015 for the 5, 2.5, and
1% thresholds, respectively. For Brazil, 0.017 for all thresholds. For Peru, 0.016, 0.019 and 0.018
for 5, 2.5, and 1% thresholds, respectively. For Chile, 0.008, 0.008, and 0.009 for 5, 2.5, and 1%
thresholds, respectively. For Colombia, p gives a probability of 0.022, 0.029, and 0.029 for 5, 2.5
and 1% thresholds, respectively. For Mexico, p gives 0.002, 0.002 and 0.003 for 5, 2.5, and 1%
thresholds, respectively. As shown, the estimate of the probability (p) gives results that are very
similar to the Basic RLS that is set out in Table 2.

The estimates of γ1 and γ2, which correspond to the components 1{xt−1 < 0} and 1{xt−1 <
0}|xt−1| (respectively) in the specification of the time-varying probability, are positive in all cases,
which is in keeping with our specification. At κ = 5%, γ1 (γ2) prove significant for all countries
except for Argentina (Argentina, Brazil, and Peru). Since γ1 and γ2 are not significant at this
threshold, Argentina is the only country that presents clear evidence of no varying-jump probability.
At a threshold of 2.5%, γ1 (γ2) shows significance for all countries except for Colombia (Argentina).
At a threshold of 1%, which will be of interest for the fourth model, the results present γ1 as
significant for all the countries except for Argentina, Colombia and Peru. As to γ2, all the estimates
are significant.

In Brazil, γ1 is similar for κ = 2.5%, 1.0% thresholds (although at κ = 1% it is relatively
greater), and the same is true for γ2. Nevertheless, it is not the case at κ = 5%, but the estimates
here are not significant. In Chile, γ1 is greater at 2.5% and 1% than at 5%. For γ2, the results are
similar at thresholds of 5% and 2.5%; at 1%, it is greater. In Colombia, at 1% and 2.5%, γ2 results
greater than at 1%. γ1 is significant just at 5%. In Mexico, for γ1 at 5%, the estimate is less than
at the other thresholds. For γ2 at 2.5%, the estimate is less than at the other thresholds. Finally,
in Peru, for γ1, at 5% and 2.5% the estimates vary greatly; for γ1, at 2.5% the estimate is greater
than at 1%. At 5%, the result is much bigger, however, not significant.

In Table 4, we show the results in cases where only a mean reversion mechanism is incorporated
in the RLS model. In this case, all the estimates of β are significantly negative. This clearly
indicates that the mean-reverting process is present in the volatility series. As to ση, it is highly
significant for Argentina, Chile, Mexico and Peru. The value is less for Argentina and Mexico with
respect to the Basic RLS; however, for the other countries, the estimate is even less.

Table 5 presents the estimates of the Modified RLS combining both the time varying jump
probability and the mean reversion mechanism using a threshold value of κ = 1%. First of all, the
estimates β are again significantly negative, which tells us this variable is present for the level-shift
components. Besides, this variable in both Tables 4 and 5 has similar results, which confirms the
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robustness of our findings. With respect to the estimates of γ1 and γ2, these are positive and
significant in all cases, except for γ1 in Argentina. For ση and σe, the estimates for each country
resemble the estimates of Table 4; this clearly tell us that the mean reverting process has a high
participation in the model, in contrast to Tables 2 and 3.

Figure 4 shows the ACF of the short-memory components only for the Basic RLS model. It is
calculated as the residuals between the volatility and the level-shift component. Because we are
only using the results from the Basic RLS models, the level-shift component has been calculated
using the method of Bai and Perron (2003)4. The message of the Figure 4 is that any evidence
of long memory behavior disappears completely. The short memory presents no evidence of this
behavior once the level shifts are taken into account by extracting them from the volatility series.

This new evidence provides the same conclusions as those reached in Lu and Perron (2010),
Li and Perron (2013), and Xu and Perron (2014), but using Forex data from emerging economies.
The message is that long memory is artificially present in these financial markets. However, if we
model and extract the level shifts, this behavior is discarded.

4.3 Effect of Level Shifts on Long Memory and ARFIMA Models

In order to confirm our results more clearly, we proceed to estimate two models: the ARFIMA(0,d,0)
and the ARFIMA(1,d,1). We estimate these models to our volatility variable and to the short-
memory component obtained through the four RLS models. The results were very similar, so for
the sake of saving space, we only show the estimation with the short-memory component of the
Basic RLS model where the short memory component is extracted using the approach of Bai and
Perron (2003).

The results are presented in Table 6. For the ARFIMA(0,d,0), the estimates of the parameter
d fluctuate between 0.197 and 0.291 and are significant in all countries. Nonetheless, when we
assess the short-memory component, which reflects the extraction of the level shifts, we can see
that the value of d becomes negative in all cases, except for Mexico, where it is nonetheless small.
These results show that the time series no longer present long-range dependence. In the case of the
ARFIMA(1,d,1) model and in the volatility series, the estimates of the parameter d again shows
a value that signals long-memory behavior. On the other hand, in the short-memory component,
antipersistence is clearly stated with a large negative value of d. By way of conclusion, it can be
stated that the long-memory behavior present in the volatility of the Forex time series is artificially
introduced by the presence of rare level shifts. After accounting for these, no evidence of long
memory is found any longer.

4.4 Effect of Level Shifts in GARCH, FIGARCH and CCGARCH

Given the above conclusion, it would be interesting to analyze the effect of level shifts within
the presence of conditional heteroskedasticity. There is some consensus that stock and Forex
returns exhibit conditional heteroskedasticity. For that reason, the GARCH(1,1) model introduced
by Bollerslev (1986) has been extensively used to model these returns and volatility. Although
Lamoureux and Lastrapes (1990) proposed the conclusion that structural changes in the level of
variance can magnify the evidence of conditional heteroskedasticity, it was not until Lu and Perron

4We also have estimates of the short-memory component extracted from the other three RLS models. The
smoothed estimates are very similar to the estimate obtained using the Basic RLS model. In order to save space, we
exclude these Figures. All these materials are available upon request.
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(2010) that an assessment was presented to prove whether these regime changes can completely
eliminate all traces of conditional heteroskedasticity. In order to compare the estimates with the
CGARCH model, we include the dummy variables associated with the level shifts detected using
the method of Bai and Perron (2003). We then apply five models: a GARCH, a FIGARCH, a
CGARCH, a CGARCH with short-memory estimated using the method of Bai and Perron (2003),
and a CGARCH with the short memory calculated using a smoothed level-shift component (τ̂ t).

For the demeaned return process r̃t, the GARCH (1,1) model is:

r̃t = σtεt, (3)

σ2t = µ+ βrr̃
2
t−1 + βσσ

2
t−1,

where εt is i.i.d. Student-t distributed with mean 0 and variance 1.
The second model is a FIGARCH:

r̃t = σtεt, (4)

(1− L)dσ2t = µ+ βrr̃
2
t−1 + βσσ

2
t−1.

The third model is a Component GARCH (CGARCH) with the following specification:

r̃t = σtεt, (5)

nt = µ+ ρ(nt−1 − µ) + ψ(r̃2t−1 + σ2t−1),

(σ2t − nt) = βr(r̃
2
t−1 − nt−1) + βσ(σ2t−1 − nt−1).

Also, we employ a CGARCH model with the level-shift component extracted using the method
of Bai and Perron (2003). We incorporate these features with the following specification:

r̃t = σtεt, (6)

(σ2t − nt) = βr(r̃
2
t−1 − nt−1) + βσ(σ2t−1 − nt−1),

nt = µ+ ρ(nt−1 − µ) + ψ(r̃2t−1 + σ2t−1) +At,

where At =

m+1∑
i=2

Di,tγi with Di,t = 1 if t is in regime i, that is, t ∈ {Ti−1 + 1, ..., Ti}, and 0.

Otherwise, with Ti (i = 1, ..., m) being the break dates obtained using the method of Bai and
Perron (2003) with the change in long-run mean (again T0 = 0 and Tm+1 = T , the number of
breaks is obtained from the point estimate of α). The coeffi cients γi, which index the magnitude
of the shifts, are parameters that are going to be estimated with the others, while the number of
breaks is obtained from the point estimate of α. We also include estimations using a CGARCH
where the level-shift component has been extracted using a smoothing procedure. In this case, we
replace At = τ̂ t.
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The results are shown in Table 7. In the cases of the GARCH (1,1) models, the two parameters
(βσ and βr) are highly significant and together sum close to 1. The second parameter βσ is higher
implying a strong persistence in the variance of the Forex returns. In the case of the estimates of the
FIGARCH model, the estimates of the fractional parameter d is greater than 0.5 in all countries.
According to this fact, long memory is present in the behavior of the volatility of the Forex returns.
The CGARCH model is also estimated without the level shifts according to equation (5). The
results gives similar information as before. In this case, the estimates of the parameter ρ results
very close to 1 implying strong persistence in the volatilities.

The results obtained with the two last specifications of the CGARCH model are quite different.
In the case of the CGARCH using the level-shift component estimated using the method of Bai
and Perron (2003), we find across all countries that the estimates of the parameter βσ are not
significant. The estimate of βr is not significant in the case of Peru alone; however, the coeffi cient
itself presents little value. Besides, and interestingly, the estimates of ρ are now well below one, with
an average value of 0.55 for all countries. In the last experiment, a CGARCH model is estimated
with the level shift component estimated using a smoothing kernel. The results are quite similar,
which testifies to their robustness.

Additional evidence is obtained from the estimates of the half-life of the shocks. The half-life
for the GARCH models shows an infinite persistence because the sum between βσ and βr is greater
than one or very close to one. For the first CGARCH (without level shifts), the average for the
six countries shows a number of around 220 days, evidencing the long-memory behavior. However,
when we incorporate the level shifts using the method of Bai and Perron (2003), the half-life of the
shocks is around 1.34 days on average for countries. The half-life for the last CGARCH (with the
smoothed level-shift component) has a similar value: 1.01 days. These last two numbers stand as
clear support of the hypothesis that long-memory is confused with structural breaks or rare level
shifts.

4.5 Forecasting Performance

We use the following forecasting horizons: τ = 1, 5, 10, 20, 50, 100. The mean square forecast
error (MSFE) criterion proposed by Hansen and Lunde (2006) and Patton (2011), is defined

by: MSFEτ ,i = 1
Tout

Tout∑
t=1

(σ̄2t,τ − ȳt+τ ,i|t)
2 where Tout is the number of forecasts (or number

of observations left to forecast), σ̄2t,τ =
∑τ

s=1
yt+s, and ȳt+τ ,i|t =

∑τ

s=1
yt+s,i|t with i index-

ing the model. The relative performance of models i and j at time t is defined as: dij,t =
(σ̄2t,τ − ȳt+τ ,i|t)

2 − (σ̄2t,τ − ȳt+τ ,j|t)
2. The different model forecasting performances are evaluated

and compared using the 10% model confidence set (MCS) of Hansen et al. (2011). The MCS offers
better model evaluation by showing the best model in cases where the data are quite informative.
However, where this is not the case, it shows various models as the best ones.

We have carried out the forecasting procedure as follows: since we use countries with few total
observations, we keep only 500 and 1028 observations for Argentina and Brazil, respectively; we
choose these numbers based on the beginning of a particular year for each country. We keep the last
2022, 1982, 2066 and 2041 observations for Chile, Colombia, Mexico and Peru respectively. There-
fore, the start date for the forecasts are: 01/17/2012 (Argentina), 01/04/2010 (Brazil), 01/03/2006
(Chile and Colombia) and 01/02/2006 (Mexico and Peru). The reasons for using this period is
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that it contains a range of very different calm and turbulent episodes, including the last financial
crisis of 2008 and the later period of quantitative easing applied in the United States. We estimate
the models just once without the last observations chosen for each country. The forecasts are then
made conditional on the parameter estimates obtained.

For the comparison with other models, we proposed two different volatilities and four different
competitor models. With respect to the volatilities, the first one is that used throughout the paper,
which is the logarithm of absolute value of the returns. The predictions are obtained using the
equation of ŷt+τ |t. As in the studies in Ojeda Cunya and Rodríguez (2016), Rodríguez (2016), and
Rodríguez and Tramontana Tocto (2015), for this specification, the comparisons are made using
the four RLS models, the ARFIMA(0,d,0) and the ARFIMA(1,d,1) models.

The second volatility series used is that of squared returns. In this case, we incorporate the
GARCH and FIGARCH as another two competitor models. In this case, because our RLS models
were estimated with the first volatility type, we proceed to make some transformations to obtain
the squared returns. All the details involved in these transformations can be found in Lu and
Perron (2010).

The results shown in Table 8 correspond to the logarithm of the absolute value of the returns
as a measure of volatility. We must clarify that when we cite one model as the best one, this is true
in statistical terms, since the MCS is a random subset that shows the best models with a certain
level of confidence (see Hansen et al., 2011). We utilize six countries and six horizons, which gives
us 36 cases to consider for each model. As regards the Basic RLS, this model belongs to the 10%
MCS in 14 out of the 36; for the Threshold κ = 1%, it belongs in 13 cases; for the Mean Reversion
RLS, we have 26 cases; and for the Modified RLS there are 18 out of 36 cases where the model
belongs to the 10% MCS. The Mean Reversion RLS model performs the best, based on the number
of times the model belongs to the MCS. Taken together, the two ARFIMA models belong to the
10% MCS in 1 out of 36 cases. The conclusion is clear. The RLS models not only fit the data well,
but also allow for a good forecasting performance in the majority of countries and for all steps.

The results with the squared return volatility series are presented in Table 9. The Basic, 1%
Threshold, Mean Reversion, and Modified RLS models belong to the 10% MCS in 19, 16, 29 and
24 cases out of 36. When it comes to the GARCH and FIGARCH together, they add up to 14 cases
out of 36, while the ARFIMAs belong to the MCS in 6 out 36 cases (adding both together). As we
found in the previous Table, even when the results of the competitor models are added together,
the RLS models performs the best in the forecasting analysis across most cases. Figures 4 and 5
illustrate the results found in Table 9. Figure 4 suggests that the FIGARCH model is never able to
dominate any member of the family of the RLS models, which is very interesting because it means
that long memory is not an ingredient needed to dominate other models, such as RLS models.
On the other hand, Figure 5 illustrates the results shown in Table 9 with respect to the GARCH
model’s performance. There are some periods for which the GARCH model is not dominated by
a member of the RLS family of models. However, we argue that in most cases, a member of the
family of the RLS models surpasses the performance of the GARCH models.

5 Conclusions

A sizeable branch of the literature on financial econometrics has proposed that long-memory behav-
ior is spurious and due to the presence of rare level shifts. Lu and Perron (2010) and Li and Perron
(2013) apply the RLS model to the stock market and Forex returns, respectively. The interesting
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issue is that after taking into account the level shifts, no evidence of long memory is present and
even GARCH effects are eliminated. Xu and Perron (2014) extend the Basic RLS model in two
aspects: (i) by introducing a time-varying probability; and (ii) a mean reversion mechanism. A
final model is a mixture of these two mentioned models. Applying these different models to the
above mentioned data, the results reinforce the results before mentioned.

In the case of Latin-American financial markets, the recent models have been applied to different
contexts. For example, Herrera Aramburú and Rodríguez (2016) opt for a testing approach to
verify whether Peruvian financial markets present long memory. A similar approach is used by
Pardo Figueroa and Rodríguez (2014). As regards modelling, Ojeda Cunya and Rodríguez (2016)
apply the Basic RLS to the Peruvian financial markets while Rodríguez and Tramontana (2015)
applied it to the Latin American stock markets. Meanwhile, the extended model proposed by Xu
and Perron has been used by Rodríguez (2016) to analyze the stock markets in Latin America. The
results obtained in this regard are similar to the original proposals of Lu and Perron (2010) and
Xu and Perron (2014); that is, showing an artificial presence of long-memory behavior due to the
(sporadic or rare) presence of level shifts.

The objective of this paper is to estimate the four different RLS models suggested by the
mentioned literature using Latin American Forex markets volatility. After estimation, we compare
the forecasting performance of these four models with other very well know models; namely, the
ARFIMA, GARCH and FIGARCH models. Our results may be summarized as follows: (i) the four
RLS models fit well; (ii) there the presence of level shifts is sporadic or rare but still important.
After taking into account these observations, long memory is not appreciated in the ACFs; that is,
there is no fractional integration evidence; (iii) the RLS models perform well in terms of forecasting
for short, medium and long horizons compared to competitive models as the ARFIMA (p,d,q),
GARCH (1,1) and FIGARCH.
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Technical Appendix

The first-differences of the model (1), with the aim of eliminating the autoregressive process
of the level shift component, depends solely on the Bernouilli process: ∆yt = τ t − τ t−1 + ct −
ct−1 = ct − ct−1 + δt, and moving to the state-space form, the mean and transition equations are
obtained, respectively: ∆yt = ct − ct−1 + δt, ct = φct−1 + et. In matrix form ∆yt = HXt + δt and

Xt = FXt−1 + Ut are obtained, where Xt = [ct, ct−1], F =

φ 0

1 0

, H = [1,−1]
′
. In this case, the

first row of the matrix F shows the coeffi cient φ of the autoregressive part of the short-memory
component. Moreover, U is a Normally distributed vector of dimension 2 with mean 0 and variance:

Q =

σ2e 0

0 0

. In comparison with the standard state-space model, the important difference in the
current model is that the distribution of δt is a mixture of two Normal distributions with variance
σ2η and 0, occurring with probabilities α and 1− α, respectively5.

The model described above is a special version of the models included in Wada and Perron
(2006) and Perron and Wada (2009). In this case, there are only shocks that affect the level of the
series, and the restriction is imposed that the variance of one of the components of the mixture of
distributions is zero. The basic input for the estimation is the increase in the states through the
realizations of the mixture at time t so that the Kalman filter can be used to construct the likelihood
function, conditional to the realizations of the states. The latent states are eliminated from the
final expression of the likelihood by summing over all the possible realizations of the states. In
consequence, despite its fundamental differences, the model takes a structure that is similar to that
of the Markov-Switching model of Hamilton (1989, 1994). Let Yt = (∆y1, ...,∆yt) be the vector of
observations available at time t and denote the vector of parameters by θ = [σ2η, α, σ

2
e, φ]. Adopting

the notation used in Hamilton (1994), 1(.) represents a vector of ones of dimension (4 × 1), the

symbol � denotes element-by-element multiplication, ξ̂ijt|t−1 = vec(ξ̃t|t−1) with the (i, j)th element

of ξ̃t|t−1 being Pr(st−1 = i, st = j|Yt−1; θ) and ωt = vec(ω̃t) with the (i, j)th element of ω̃t being
f(∆yt|st−1 = i, st = j, Yt−1; θ) for i, j ∈ {1, 2}. Thus, I have st = 1 when πt = 1, that is, a level
shift occurs. Using the same notation as Lu and Perron (2010), the logarithm of the likelihood
function is ln(L) =

∑T
t=1 ln f(∆yt|Yt−1; θ), where

f(∆yt|Yt−1, θ) =
2∑
i=1

2∑
j=1

f(∆yt|st−1 = i, st = j, Yt−1, θ) Pr(st−1 = i, st = j|Yt−1, θ)

≡ 1′(ξ̂t|t−1 � ωt).

By applying rules of conditional probabilities, Bayes’s rule and the independence of st with

respect to past realizations, I obtain ξ̃
ki

t|t−1 = Pr(st−2 = k, st−1 = i|Yt−1; θ). The evolution of ξ̂t|t−1
5 In comparison with the Markov-Switching model of Hamilton (1989), this model does not limit the magnitude

of the level shifts, so any number of regimes is possible. Moreover, the probability 0 or 1 does not depend on past
events, unlike the Markov model.
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can be expressed as: 
ξ̃
11

t+1|t

ξ̃
21

t+1|t

ξ̃
12

t+1|t

ξ̃
22

t+1|t

 =


α α 0 0

0 0 α α

1− α 1− α 0 0

0 0 1− α 1− α




ξ̃
11

t|t

ξ̃
21

t|t

ξ̃
12

t|t

ξ̃
22

t|t

 , (A.1)

which is equal to ξ̂t+1|t = Πξ̂t|t with ξ̂t|t =
(ξ̂t|t−1�ωt)
1′(ξ̂t|t−1�ωt)

. Note that thus far the model includes

the probabilities of level shift (α) as constant. Thus, once the specific estimate of α is obtained,
a possible approach is the use of a smoothed estimate of the level shift component τ̂ t. However,
in the present context of abrupt structural shifts, the conventional smoothers may perform poorly.
In place of this, I use the method proposed by Bai and Perron (1998, 2003) to obtain the dates on
which the level shifts occur, as well as the means (averages) within each segment. Indeed, I use
the estimation of α to obtain an estimate of the number of level shifts, and the method of Bai and
Perron (1998, 2003) to obtain estimates of the break dates that globally minimize the following sum

of squared residuals:
m+1∑
i=1

Ti∑
t=Ti−1+1

[yt − µi]2, where m is the number of breaks, Ti (i = 1, 2, ...;m)

are the break dates T0 = 0, and Tm+1 = T and µi (i = 1, 2, ...,m + 1) are the means (averages)
inside each regime, which can be estimated once the date breaks have been estimated or known .
This method is effi cient and can handle a large number of observations; see Bai and Perron (2003)
for further details6.

In consequence, the conditional likelihood function for ∆yt corresponds to the following Normal
density:

ω̃ijt = f(∆yt|st−1 = i, st = j, Yt−1, θ) =
1√
2π
|f ijt |−1/2 exp(−v

ij′

t (f ijt )−1/2vijt
2

),

where vijt is the prediction error and f
ij
t is its variance, and these terms are defined as:

vijt = ∆yt −∆yit|t−1 = ∆yt − E[∆yt|st = i, Yt−1; θ],

f ijt = E(vijt v
ij′

t ).

The best predictions for the state variable and its respective conditional variance in st−1 = i are
Xi
t|t−1 = FXi

t−1|t−1, and P
i
t|t−1 = FP it−1|t−1F

′+Q, respectively. Furthermore, the mean equation is
∆yt = HXt+ δt, where the error δt has a mean 0 and a variance that can take values R1 = σ2η with
probability α or R2 = 0 with probability (1−α). Thus, the prediction error is vijt = ∆yt−HXi

t|t−1
and its variance is f ijt = HP it|t−1H

′ + Rj . In this way, given that st = j and st−1 = i and using

6Note that because the model permits consecutive level shifts, we set (in the empirical application of the Basic
RLS model) the minimum length of a segment at only one observation.

A-2



updating formulas:

Xi
t|t = Xi

t|t−1 + P it|t−1H
′(HP it|t−1H

′ +Rj)
−1(∆yt −HXi

t|t−1),

P ijt|t−1 = P it|t−1 − P
i
t|t−1H

′(HP it|t−1H
′ +Rj)

−1HP it|t−1,

are obtained. In order to reduce the dimensionality problem in the estimation, Lu and Perron
(2010) use the recollapsing procedure proposed by Harrison and Stevens (1976). In so doing,
ω̃ijt is unaffected by the history of the states before time t − 1. The, I have four possible states
corresponding to St = 1 when (st = 1, st−1 = 1), St = 2 when (st = 1, st−1 = 2), St = 3 when
(st = 2, st−1 = 2) and St = 4 when (st = 2, st−1 = 2) and the matrix Π is defined as (A.1).
Taking the definitions of ω̃t, ξ̂t|t, ξ̂t+1|t, the set of conditional probabilities and the one-period
forward predictions, the same structure as a version of the Markov model of Hamilton (1989, 1994)
is obtained. However, the EM algorithm cannot be used. This is because the mean and the
variance in the conditional density function are non-linear functions of the parameters θ and of
past realizations {∆yt−j ; j ≥ 1}. Likewise, the conditional probability of being in a determined
regime ξ̂t|t is inseparable from the conditional densities ω̃t. For further details, see Lu and Perron
(2010), Li and Perron (2013), and Wada and Perron (2006).

The estimation method is based on the work of Xu and Perron (2014), which is an extension of
the basic RLS model by Lu and Perron (2010) and Li and Perron (2013). The first difference com-
pared with the basic model is that the vector of parameters is different: θ = [σ2η, p, σ

2
e, φ, γ1, γ2, β]7.

The second important difference is that, given the probability of level shifts is now varying, the
equation (A.1) is replaced by:

ξ̃
11

t+1|t

ξ̃
21

t+1|t

ξ̃
12

t+1|t

ξ̃
22

t+1|t

 =


pt+1 pt+1 0 0

0 0 pt+1 pt+1

(1− pt+1) (1− pt+1) 0 0

0 0 (1− pt+1) (1− pt+1)




ξ̃
11

t|t

ξ̃
21

t|t

ξ̃
12

t|t

ξ̃
22

t|t

 . (A.2)

Therefore, the conditional likelihood function for ∆yt follows the Normal density:

ω̃ijt = f(∆yt|st−1 = i, st = j, Yt−1, θ) =
1√
2π
|f ijt |−1/2 exp(−v

ij′

t (f ijt )−1/2vijt
2

),

where vijt is the prediction error and f ijt is its variance and is defined as: vijt = ∆yt − ∆yijt|t−1 =

∆yt − E[∆yt|st = i, st−1 = j, Yt−1, θ] and f
ij
t = E(vijt v

ij′

t ). Note that ∆yijt|t−1 depends only on
the information contained in t − 1. The predictions for the variable of state and its respective
conditional variance to st−1 = i are: Xi

t|t−1 = FXi
t−1|t−1 and P

i
t|t−1 = FP it−1|t−1F

′ +Q. The mean
equation is ∆yt = HXt + δt, where the error δt has zero mean and a variance that can take values

7This vector of parameters corresponds to the model that contains the two extensions, that is, the Modified RLS
model. In the case of the Threshold κ% RLS model (only varying probabilities), the vector of parameters is θ =
[σ2η, p, σ

2
e, φ, γ1, γ2], while in the case of the Mean Reversion RLS model, the set of parameters is θ = [σ

2
η, p, σ

2
e, φ, β].
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R1 = σ2η or values R2 = 0, so the prediction error is vijt = ∆yt −HXi
t|t−1 and is associated with a

variance f ijt = HP it|t−1H
′ +Rj . Then, given st = j and st−1 = i and using the updating formula I

have:

Xij
t|t = Xi

t|t−1 + P it|t−1H
′(HP it|t−1H

′ +Rj)
−1(∆yt −HXi

t|t−1),

P ijt|t = P it|t−1 − P
i
t|t−1H

′(HP it|t−1H
′ +Rj)

−1HP it|t−1.

As in Perron and Wada (2009), I reduce the estimation problem by using the recollapsing process
proposed by Harrison and Stevens (1976):

Xi
t|t =

∑2
i=1 Pr(st−1 = i, st = j|Yt, θ)Xij

t|t
Pr(st = j|Yt, θ)

=

∑2
i=1 ξ̃

ij

t|tX
ij
t|t∑2

i=1 ξ̃
ij

t|t

,

P it|t =

∑2
i=1 Pr(st−1 = i, st = j|Yt, θ)[P ijt|t + (Xi

t|t −X
ij
t|t)(X

i
t|t −X

ij
t|t)
′]

Pr(st = j|Yt, θ)

=

∑2
i=1 ξ̃

ij

t|t[P
ij
t|t + (Xj

t|t −X
ij
t|t)(X

j
t|t −X

ij
t|t)
′]∑2

i=1 ξ̃
ij

t|t

.

For the Mean Reversion RLS model, certain modifications are necessary. The prediction error
vijt of the previous expressions is no longer Normally distributed with mean 0 and variance that
depends on the value of the state, but is modeled as: yt = a+ ct + τ t,

∆yt = τ t − τ t−1 + ct − ct−1, τ t − τ t−1 = πt[β(τ t|t−1 − τ t) + η̃1t] + (1− πt)η2t.

Moreover,

ω̃ijt = f(∆yt|st−1 = i, st = j, Yt−1, θ) =
1√
2π
|f ijt |−1/2 exp(− ṽ

ij′

t (f ijt )−1/2ṽijt
2

),

ṽijt =



v11t − β(τ11t|t−1 − τ
11
t )

v12t

v21t − β(τ21t|t−1 − τ
21
t )

v22t


,

and f ijt = E(ṽijt ṽ
ij′

t ) = HP it|t−1H
′ +Rj . Further details appear in Xu and Perron (2014).
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Table 1. Descriptive Statistics of the Volatility Series

Volatility Mean SD Maximum Minimum Skewness Kurtosis

Argentina -6.026 0.739 -1.503 -6.908 1.473 5.838

Brazil -5.145 0.857 -2.259 -6.908 0.065 2.569

Chile -5.616 0.736 -3.044 -6.908 0.245 2.440

Colombia -5.668 0.767 -2.564 -6.908 0.400 2.637

Mexico -5.576 0.817 -1.679 -6.908 0.440 3.148

Peru -6.148 0.597 -3.738 -6.908 0.940 3.524

Table 2. Estimates of the Basic RLS Model

ση α σe φ Likelihood

Argentina 1.309a 0.015a 0.496a 2413.592

(0.198) (0.003) (0.008)

Brazil 0.535a 0.016b 0.745a 4414.095

(0.120) (0.007) (0.009)

Chile 0.477a 0.009b 0.636a 5272.241

(0.128) (0.004) (0.007)

Colombia 0.435a 0.0188b 0.647a 0.066a 5358.872

(0.110) (0.009) (0.007) (0.016)

Mexico 1.072a 0.003a 0.670a 0.071a 5895.033

(0.072) (0.001) (0.007) (0.015)

Peru 0.513a 0.017a 0.490a 0.104a 3229.701

(0.084) (0.005) (0.006) (0.020)

Standard errors are in parentheses; estimates with a, b, c are significant at the 1%, 5%, 10% levels respectively.
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Table 3. Estimates of the RLS Model with Time Varying Probabilities

Threshold ση p σe γ1 γ2 Likelihood

Argentina

5% 1.120a -2.175a 0.477a 0.519 142.698 2379.683

(0.150) (0.184) (0.008) (0.374) (10869.088)

2.5% 1.244a -2.115a 0.477a 2.381a 0.166 2386.231

(0.140) (0.167) (0.008) (0.708) (0.251)

1% 1.192a -2.158a 0.491a 2.708 0.097b 2404.579

(0.172) (0.173) (0.008) (2.223) (0.043)

Brazil

5% 0.449a -2.120a 0.745a 0.253a 24.541 4404.834

(0.106) (0.418) (0.009) (0.095) (310.601)

2.5% 0.462a -2.113a 0.745a 1.218b 0.076a 4405.906

(0.105) (0.414) (0.009) (0.488) (0.012)

1% 0.465a -2.121a 0.745a 1.784c 0.118a 4404.861

(0.104) (0.408) (0.009) (0.979) (0.031)

Chile

5% 0.450a -2.399a 0.636a 0.656b 0.398a 5270.988

(0.114) (0.433) (0.007) (0.278) (0.135)

2.5% 0.452a -2.419a 0.635a 1.193a 0.382b 5268.813

(0.107) (0.417) (0.007) (0.429) (0.184)

1% 0.444a -2.373a 0.635a 1.689b 0.433b 5269.273

(0.120) (0.419) (0.007) (0.852) (0.190)

Standard errors are in parentheses; estimates with a, b, c are significant at the 1%, 5%, 10% levels respectively.
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Table 3 (continued). Estimates of the RLS Model with Time Varying Probabilities

Threshold ση p σe φ γ1 γ2 Likelihood

Colombia

5% 0.337a -2.018a 0.640a 0.057a 1.722b 0.276b 5345.784

(0.092) (0.474) (0.007) (0.016) (0.737) (0.134)

2.5% 0.311a -1.904a 0.640a 0.057a 2.647 0.371a 5345.966

(0.0974) (0.506) (0.007) (0.016) (3.661) (0.137)

1% 0.335a -1.897a 0.641a 0.062a 3.195 0.135a 5351.935

(0.125) (0.587) (0.007) (0.017) (15.966) (0.036)

Mexico

5% 0.993a -2.909a 0.670a 0.072a 1.116a 0.706a 5886.841

(0.011) (0.340) (0.007) (0.015) (0.288) (0.242)

2.5% 0.924a -2.859a 0.668a 0.068a 1.660a 0.088a 5885.390

(0.005) (0.304) (0.007) (0.015) (0.413) (0.011)

1% 1.009a -2.800a 0.669a 0.070a 1.678a 0.532b 5889.191

(0.012) (0.250) (0.007) (0.015) (0.642) (0.266)

Peru

5% 0.553a -2.148a 0.476a 0.062a 0.015a 258.096 3206.984

(0.074) (0.230) (0.007) (0.021) (0.0004) (10428.507)

2.5% 0.516a -2.076a 0.478a 0.071a 2.242b 0.212b 3215.909

(0.075) (0.241) (0.007) (0.022) (0.934) (0.083)

1% 0.586a -2.096a 0.477a 0.067a 5.631 0.110a 3211.692

(0.072) (0.193) (0.006) (0.020) (118.490) (0.005)

Standard errors are in parentheses; estimates with a, b, c are significant at the 1%, 5%, 10% levels respectively.
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Table 4. Estimates of the RLS Model with Mean Reversion

ση α σe φ β Likelihood

Argentina 0.965a 0.016a 0.496a -0.738a 2403.952

(0.067) (0.004) (0.008) (0.123)

Brazil 0.106 0.065b 0.744a -0.223a 4403.7421

(0.072) 0.030) (0.009) (0.015)

Chile 0.156a 0.035c 0.633a -0.209a 5264.194

(0.054) (0.020) (0.007) (0.015)

Colombia 0.052 0.084a 0.632a -0.288a 5341.479

(0.126) (0.021) (0.007) (0.016)

Mexico 0.907a 0.003a 0.669a 0.069a -0.362a 5892.114

(0.128) (0.001) (0.007) (0.015) (0.062)

Peru 0.141a 0.109a 0.473a -0.310a 3213.794

(0.025) (0.023) (0.006) (0.014)

Standard errors are in parentheses; estimates with a, b, c are significant at the 1%, 5%, 10% levels respectively.
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Table 5. Estimates of the RLS Model with a Time Varying Probability of Shifts and Mean Reversion, Threshold: 1%

ση p σe φ γ1 γ2 β Likelihood

Argentina 0.912a -2.120a 0.491a 2.271 0.050a -0.598a 2394.529

(0.139) (0.178) (0.008) (1.514) (0.004) (0.093)

Brazil 0.134a -1.447a 0.743a 0.507c 0.344a -0.184a 4397.301

(0.048) (0.392) (0.009) (0.297) (0.089) (0.012)

Chile 0.173a -1.859a 0.633a 0.455b 0.245a -0.207a 5263.683

(0.060) (0.514) (0.007) (0.182) (0.063) (0.016)

Colombia 0.060a -1.400a 0.632a 0.228a 0.992b -0.292a 5339.754

(0.087) (0.179) (0.007) (0.077) (0.503) (0.013)

Mexico 0.925a -2.770a 0.669a 0.068a 1.396b 0.091a -0.292a 5887.014

(0.261) (0.348) (0.007) (0.015) (0.570) (0.031) (0.044)

Peru 0.166a -1.346a 0.471a 1.276a 0.502c -0.340a 3205.012

(0.035) (0.163) (0.006) (0.393) (0.296) (0.015)

Standard errors are in parentheses; estimates with a, b, c are significant at the 1%, 5%, 10% levels respectively.
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Table 6. Estimated Parameters of ARFIMA(0,d,0) and ARFIMA(1,d,1) models

d AR MA d AR MA d AR MA

Argentina Brazil Chile

Volatility 0.291 0.201 0.197

(0.000) (0.000) (0.000)

0.508 0.349 -0.650 0.392 0.078 -0.390 0.436 0.277 -0.625

(0.000) (0.000) (0.000) (0.000) (0.227) (0.000) (0.000) (0.000) (0.000)

Ct -0.068 -0.067 -0.041

(0.000) (0.000) (0.000)

-0.775 0.789 -0.043 -0.783 0.865 -0.154 -0.919 0.922 -0.037

(0.000) (0.000) (0.219) (0.000) (0.000) (0.000) (0.000) (0.000) (0.236)

Colombia Mexico Peru

Volatility 0.230 0.248 0.264

(0.000) (0.000) (0.000)

0.423 0.266 -0.547 0.491 0.243 -0.589 0.421 0.275 -0.497

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Ct -0.013 0.020 0.006

(0.309) (0.000) (0.688)

-0.844 0.887 -0.049 -0.864 0.925 -0.037 -0.779 0.841 -0.038

(0.000) (0.000) (0.087) (0.000) (0.000) (0.237) (0.000) (0.000) (0.183)

p-values are reported in parenthesis.
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Table 8. Forecast Evaluations [ŷt+τ |t = Et ln(|rt+τ |+ 0.001)]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Argentina

Basic RLS 0.145 1.362 3.125 8.429 61.963 118.029

(0.024) (0.825*) (1.000*) (0.000) (0.018) (0.000)

Threshold 1% RLS 0.120 1.473 4.030 7.242 62.242 114.337

(1.000*) (0.222*) (0.097) (0.276*) (0.000) (0.000)

Mean Reversion RLS 0.131 1.339 3.230 7.163 57.806 97.508

(0.024) (1.000*) (0.771*) (0.561*) (1.000*) (1.000*)

Modified RLS 0.122 1.430 3.672 7.092 63.492 109.518

(0.568*) (0.327*) (0.097) (1.000*) (0.000) (0.000)

ARFIMA(0,d,0) 0.232 2.899 9.279 31.849 167.211 607.624

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 3.238 77.485 307.187 1197.914 7055.237 26250.370

(0.000) 0.000) (0.000) (0.000) (0.000) (0.000)

Brazil

Basic RLS 0.507 3.912 10.846 36.467 250.632 1191.939

(0.001) (0.060) (0.003) (0.000) (0.000) (0.022)

Threshold 1% RLS 0.492 3.858 10.813 36.469 253.275 1226.363

(1.000*) (0.116*) (0.005) (0.000) (0.000) (0.011)

Mean Reversion RLS 0.493 3.778 10.400 34.551 222.385 1060.620

(0.837*) (1.000*) (0.301*) (0.002) (0.007) (0.054)

Modified RLS 0.499 3.792 10.360 34.074 219.278 1038.370

(0.150*) (0.253*) (1.000*) (1.000*) (1.000*) (0.054)

ARFIMA(0,d,0) 0.667 6.319 18.895 61.216 298.521 937.055

(0.000) (0.000) (0.000) (0.000) (0.000) (1.000*)

ARFIMA(1,d,1) 0.674 6.510 19.642 64.132 315.047 1006.433

(0.000) (0.000) (0.000) (0.000) (0.000) (0.054)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 8 (continued). Forecast Evaluations [ŷt+τ |t = Et ln(|rt+τ |+ 0.001)]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Chile

Basic RLS 0.408 2.715 7.678 26.857 160.769 689.341

(0.000) (0.123*) (0.119*) (0.394*) (0.022) (0.000)

Threshold 1% RLS 0.393 2.634 7.397 26.221 163.373 691.651

(1.000*) (1.000*) (1.000*) (0.879*) (0.008) (0.000)

Mean Reversion RLS 0.402 2.668 7.513 26.191 154.837 638.048

(0.000) (0.420*) (0.432*) (0.879*) (1.000*) (1.000*)

Modified RLS 0.400 2.657 7.472 26.155 155.744 641.944

(0.000) (0.423*) (0.441*) (1.000*) (0.098) (0.081)

ARFIMA(0,d,0) 0.614 6.741 22.600 80.008 434.454 1595.243

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.594 6.251 20.640 72.153 384.979 1395.665

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Colombia

Basic RLS 0.312 3.341 10.432 38.244 272.898 1380.787

(1.000*) (1.000*) (0.343*) (0.272*) (0.002) (0.000)

Threshold 1% RLS 0.373 3.421 10.213 36.325 255.193 1290.177

(0.000) (0.013) (1.000*) (0.900*) (0.044) (0.000)

Mean Reversion RLS 0.412 3.496 10.362 36.261 241.960 1144.643

(0.000) (0.013) (0.579*) (0.900*) (1.000*) (1.000*)

Modified RLS 0.412 3.507 10.399 36.163 243.052 1168.833

(0.000) (0.013) (0.579*) (1.000*) (0.548*) (0.003)

ARFIMA(0,d,0) 0.813 11.046 38.431 140.423 801.526 3018.886

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.846 11.869 41.733 153.675 886.334 3365.760

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 8 (continued). Forecast Evaluations [ŷt+τ |t = Et ln(|rt+τ |+ 0.001)]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Mexico

Basic RLS 0.299 2.715 8.258 28.893 197.425 992.964

(1.000*) (1.000*) (0.224*) (0.002) (0.000) (0.000)

Threshold 1% RLS 0.342 2.867 8.255 27.352 183.932 900.678

(0.000) (0.015) (0.140*) (0.101*) (0.002) (0.000)

Mean Reversion RLS 0.354 2.848 7.994 25.936 173.080 852.005

(0.000) (0.016) (1.000*) (1.000*) (1.000*) (0.649*)

Modified RLS 0.346 2.845 8.090 26.342 174.064 847.066

(0.000) (0.020) (0.394*) (0.379*) (0.689*) (1.000*)

ARFIMA(0,d,0) 0.741 9.569 33.552 123.001 712.049 2679.897

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.722 9.091 31.640 115.342 663.589 2484.965

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Peru

Basic RLS 0.185 2.411 8.473 31.146 179.363 766.564

(1.000*) (0.025) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.203 2.547 9.197 34.789 204.453 870.528

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean Reversion RLS 0.224 2.344 8.050 29.699 167.649 702.526

(0.000) (1.000*) (1.000*) (1.000*) (1.000*) (1.000*)

Modified RLS 0.214 2.441 8.780 33.834 196.975 830.357

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.397 5.034 16.498 54.349 273.831 953.812

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.398 5.062 16.609 54.823 277.155 969.622

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9. Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Argentina

Basic RLS 0.000 0.002 0.005 0.006 0.006 0.007

(0.331*) (0.578*) (0.762*) (0.931*) (0.570*) (0.570*)

Threshold 1% RLS 0.000 0.002 0.005 0.006 0.006 0.007

(1.000*) (1.000*) (0.762*) (0.912*) (0.507*) (0.564*)

Mean Reversion RLS 0.000 0.002 0.005 0.006 0.006 0.007

(0.331*) (0.578*) (0.762*) (0.945*) (0.531*) (0.572*)

Modified RLS 0.000 0.002 0.005 0.006 0.006 0.007

(0.331*) (0.578*) (0.762*) (0.938*) (0.490*) (0.567*)

GARCH(1,1) 0.001 0.003 0.005 0.006 0.006 0.007

(0.149*) (0.065) (0.011) (0.063) (1.000*) (1.000*)

FIGARCH(1,1) 0.001 0.003 0.005 0.006 0.007 0.007

(0.149*) (0.065) (0.003) (0.000) (0.020) (0.000)

ARFIMA(0,d,0) 0.000 0.002 0.005 0.007 0.014 0.043

(0.149*) (0.298*) (0.011) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.000 0.002 0.005 0.006 0.007 0.011

(0.156*) (0.578*) (1.000*) (1.000*) (0.020) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9 (continued). Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Brazil

Basic RLS 0.000 0.000 0.000 0.002 0.013 0.044

(0.563*) (0.011) (0.000) (0.000) (0.002) (0.000)

Threshold 1% RLS 0.000 0.000 0.000 0.001 0.012 0.042

(0.563*) (0.011) (0.000) (0.000) (0.004) (0.000)

Mean Reversion RLS 0.000 0.000 0.000 0.001 0.012 0.043

(0.331*) (0.011) (0.000) (0.350*) (0.004) (0.000)

Modified RLS 0.000 0.000 0.000 0.001 0.012 0.043

(1.000*) (1.000*) (1.000*) (1.000*) (0.004) (0.000)

GARCH(1,1) 0.000 0.000 0.001 0.002 0.011 0.030

(0.006) (0.000) (0.000) (0.000) (1.000*) (1.000*)

FIGARCH(1,1) 0.000 0.001 0.002 0.008 0.041 0.140

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.000 0.001 0.002 0.007 0.040 0.148

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,1) 0.000 0.000 0.001 0.005 0.025 0.087

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9 (continued). Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Chile

Basic RLS 0.000 0.000 0.000 0.001 0.005 0.014

(0.124*) (0.051) (0.202*) (0.026) (0.000) (0.000)

Threshold 1% RLS 0.000 0.000 0.000 0.001 0.005 0.014

(1.000*) (1.000*) (1.000*) (0.002) (0.000) (0.000)

Mean Reversion RLS 0.000 0.000 0.000 0.001 0.005 0.013

(0.144*) (0.055) (0.252*) (0.635*) (1.000*) (1.000*)

Modified RLS 0.000 0.000 0.000 0.001 0.005 0.013

(0.146*) (0.057) (0.305*) (1.000*) (0.000) (0.000)

GARCH(1,1) 0.000 0.000 0.000 0.001 0.006 0.021

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

FIGARCH(1,1) 0.000 0.000 0.000 0.001 0.007 0.021

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.000 0.000 0.001 0.002 0.007 0.023

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.000 0.000 0.001 0.002 0.008 0.026

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9 (continued). Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Colombia

Basic RLS 0.000 0.000 0.001 0.003 0.013 0.045

(0.410*) (0.034) (0.009) (0.357*) (0.997*) (0.394*)

Threshold 1% RLS 0.000 0.000 0.001 0.004 0.015 0.047

(0.410*) (0.041) (0.002) (0.003) (0.001) (0.000)

Mean Reversion RLS 0.000 0.000 0.001 0.003 0.014 0.046

(0.410*) (0.977*) (1.000*) (1.000*) (0.505*) (0.235*)

Modified RLS 0.000 0.000 0.001 0.003 0.014 0.046

(1.000*) (1.000*) (0.019) (0.357*) (0.196*) (0.195*)

GARCH(1,1) 0.000 0.000 0.001 0.004 0.013 0.044

(0.127*) (0.004) (0.000) (0.000) (1.000*) (1.000*)

FIGARCH(1,1) 0.000 0.000 0.001 0.005 0.020 0.068

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.000 0.000 0.001 0.005 0.019 0.062

(0.008) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,1) 0.000 0.000 0.001 0.005 0.020 0.063

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9 (continued). Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Mexico

Basic RLS 0.000 0.000 0.001 0.005 0.022 0.070

(0.549*) (0.619*) (0.034) (0.001) (0.000) (0.000)

Threshold 1% RLS 0.000 0.000 0.001 0.005 0.023 0.070

(1.000*) (1.000*) (0.064) (0.001) (0.000) (0.000)

Mean Reversion RLS 0.000 0.000 0.001 0.005 0.022 0.069

(0.380*) (0.619*) (1.000*) (1.000*) (1.000*) (0.000)

Modified RLS 0.000 0.000 0.001 0.005 0.023 0.069

(0.795*) (0.740*) (0.178*) (0.002) (0.000) (0.000)

GARCH(1,1) 0.000 0.000 0.002 0.006 0.024 0.064

(0.380*) (0.619*) (0.009) (0.001) (0.000) (1.000*)

FIGARCH(1,1) 0.000 0.001 0.002 0.008 0.034 0.090

(0.894*) (0.418*) (0.007) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.000 0.001 0.002 0.007 0.027 0.079

(0.006) (0.003) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.000 0.001 0.002 0.006 0.025 0.069

(0.029) (0.046) (0.000) (0.000) (0.000) (0.001)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Table 9 (continued). Forecast Evaluations [ŷt+τ |t = Etr
2
t+τ ]

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Peru

Basic RLS 0.000 0.000 0.000 0.000 0.000 0.001

(0.370*) (0.032) (1.000*) (1.000*) (0.299*) (0.000)

Threshold 1% RLS 0.000 0.000 0.000 0.000 0.000 0.001

(0.864*) (0.007) (0.092) (0.000) (0.379*) (1.000*)

Mean Reversion RLS 0.000 0.000 0.000 0.000 0.000 0.001

(0.853*) (1.000*) (0.363*) (0.001) (0.287*) (0.118*)

Modified RLS 0.000 0.000 0.000 0.000 0.000 0.001

(1.000*) (0.084) (0.194*) (0.001) (0.287*) (0.048)

GARCH(1,1) 0.000 0.000 0.000 0.000 0.000 0.001

(0.045) (0.000) (0.000) (0.000) (1.000*) (0.000)

FIGARCH(1,1) 0.000 0.000 0.000 0.000 0.001 0.004

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.000 0.000 0.000 0.000 0.000 0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.000 0.000 0.000 0.000 0.000 0.002

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

The MSFEs are reported in the main entires; the MCS p-values are in parenthesis; a (∗) indicates that the model is
within the 10% MCS using all comparisons.
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Figure 1. Daily Forex Returns
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Figure 2. Sample ACF of Forex Returns Volatility
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Figure 3. Sample ACF of the Short Memory Components: Volatility minus Smoothed Level Shift Component from

Basic RLS (Solid line), Threshold 1% RLS (Dashed line), Mean Reversion RLS (Dotted line) and from Modified

RLS (Dash-Dot line).
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Figure 4. In sample RLS versus out-of-sample FIGARCH forecasts: Ratios MSE(“i”RLS

Model)/MSE(FIGARCH); i = Basic, solid line; i = 1% Threshold, dotted line; i = Mean Reversion, dashed line;

i = Modified, dash-dot line.
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Figure 5. In sample RLS versus out-of-sample GARCH forecasts: Ratios MSE(“i”RLS Model)/MSE(GARCH);

i = Basic, solid line; i = 1% Threshold, dotted line; i = Mean Reversion, dashed line; i = Modified, dash-dot line.
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