
DEPARTAMENTO
DE ECONOMÍA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DE?L PERÚUNIVERSIDAD CATÓLICA:

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DEPARTAMENTO DE  ECONOMÍA
PONTIFICIA  DEL PERÚUNIVERSIDAD CATÓLICA

DOCUMENTO DE TRABAJO N° 416

 MODELING LATIN-AMERICAN STOCK AND FOREX
MARKETS VOLATILITY: EMPIRICAL  APPLICATION 
OF A MODEL WITH RANDOM LEVEL SHIFTS AND 
GENUINE LONG MEMORY
Gabriel Rodríguez



 

 

 

 

DOCUMENTO DE TRABAJO N° 416 
 

 

 

 
MODELING LATIN-AMERICAN STOCK AND FOREX MARKETS 
VOLATILITY: EMPIRICAL APPLICATION OF A MODEL WITH 
RANDOM LEVEL SHIFTS AND GENUINE LONG MEMORY    
 
 
 
 
  

 Gabriel Rodríguez  
  
 
 
  
 

 
Marzo, 2016 
 

 

 

 
 

DEPARTAMENTO 
DE ECONOMÍA 

 
 

 

 

 

 

 

 

 

DOCUMENTO DE TRABAJO 416 
http://files.pucp.edu.pe/departamento/economia/DDD416.pdf  

http://files.pucp.edu.pe/departamento/economia/DDD416.pdf


© Departamento de Economía – Pontificia Universidad Católica del Perú, 

© Gabriel Rodríguez 

 

Av. Universitaria 1801, Lima 32 – Perú. 

Teléfono: (51-1) 626-2000 anexos 4950 - 4951 

Fax: (51-1) 626-2874 

econo@pucp.edu.pe  

www.pucp.edu.pe/departamento/economia/ 

 

Encargado de la Serie: Jorge Rojas Rojas 

Departamento de Economía – Pontificia Universidad Católica del Perú, 

jorge.rojas@pucp.edu.pe  

 

 
Gabriel Rodríguez 
 
Modeling Latin-American Stock and Forex Markets Volatility: Empirical 
Application of a Model with Random Level Shifts and Genuine Long 
Memory  
 
Lima, Departamento de Economía, 2016 
(Documento de Trabajo  416) 
 
PALABRAS CLAVE:  Long Memory, Random Level Shifts, ARFIMA Models, 
GARCH Effects, Stock and Forex Markets, Latin-American, Volatility. 
 

 

Las opiniones y recomendaciones vertidas en estos documentos son responsabilidad de sus 

autores y no representan necesariamente los puntos de vista del Departamento Economía. 

 

 

 

 

Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2016-03786. 

ISSN 2079-8466 (Impresa) 

ISSN 2079-8474 (En línea) 

 

 

 

 

Impreso en Kolores Industria Gráfica E.I.R.L. 

Jr. La Chasca 119, Int. 264, Lima 36, Perú. 

Tiraje: 100 ejemplares 

mailto:econo@pucp.edu.pe
mailto:jorge.rojas@pucp.edu.pe


Modeling Latin-American Stock and Forex Markets Volatility:
Empirical Application of a Model with Random Level Shifts and

Genuine Long Memory
Gabriel Rodríguez

Pontificia Universidad Católica del Perú

Abstract

Following Varneskov and Perron (2014), I apply the RLS-ARFIMA(0,d,0) and the RLS-ARFIMA
(1,d,1) models to the daily stock and Forex market returns volatility of Argentina, Brazil, Chile,
Mexico and Peru. It is a parametric state-space model with an estimation framework that combines
long memory and level shifts by decomposing the underlying process into a simple mixture model
and ARFIMA dynamics. The full sample parameters estimates show that level shifts are rare but
they are present in all series. A genuine long-memory component is present in volatility of some
countries and the results suggest that the remaining short-memory component is nearly uncorrelated
once the level shifts are accounted for. I compare the results with four RLS models as in Xu and
Perron (2014) and applied in Rodríguez (2016) for same Latin-American series. An out-of-sample
forecasting comparison is also performed using the approach of Hansen et al. (2011). The RLS-
ARFIMA models presents better performance for some horizons while the other four RLS models
are better for other horizons. In none horizon of forecasting, simple ARFIMA models are selected
or belong to the 10% of the MCS of Hansen et al. (2011).

JEL Clasification: C22, C52, G12.
Keywords: Long Memory, Random Level Shifts, ARFIMA Models, GARCH Effects, Stock Mar-
kets, Latin-America, Volatility.

Resumen

Siguiendo Varneskov y Perron (2014), yo aplico los modelos RLS-ARFIMA (0,d,0) y RLS-ARFIMA
(1,d,1) a datos diarios de las volatilidades de los mercados bursátiles en Argentina, Brasil, Chile,
México y Perú. Este modelo es de tipo paramétrico en forma espacio estado y su estimación combina
una mezcla de un proceso de larga memoria con cambios de nivel. Esto se hace descomponiendo
el proceso subyacente en un modelo de mezcla simple con dinámica ARFIMA. Las estimaciones
de parámetros muestran que los cambios de nivel son raros, pero ellos están presentes en todas
las series analizadas. Un componente de genuina larga memoria es encontrado en la volatilidad
de algunos países y los resultados sugieren que el componente de corta memoria remanente es
prácticamente no correlacionado una vez que los cambios de nivel son tomados en cuenta. Los
resultados son comparados con aquellos obtenidos en cuatro modelos propuestos en Xu y Perron
(2014) y también usados en Rodríguez (2016) para las mismas series de América Latina. Una
comparación de predicción fuera de muestra también es realizada usando el enfoque de Hansen
et al. (2011). Los modelos RLS-ARFIMA presentan mejor performance para algunos horizontes,
mientras que los otros cuatro modelos RLS son mejores para otros horizontes. En ningún horizonte
de predicción se seleccionan los modelos ARFIMA, o en ningún caso pertenecen al 10% del MCS
propuesto por Hansen et al. (2011).

Clasificación JEL: C22, C52, G12.
Palabras Claves: Larga Memoria, Cambios de Nivel Aleatorios, Modelos ARFIMA, Efectos
GARCH, Mercados Bursátiles, América Latina, Volatilidad.



Modeling Latin-American Stock and Forex Markets Volatility:
Empirical Application of a Model with Random Level Shifts and

Genuine Long Memory1

Gabriel Rodríguez2

Pontificia Universidad Católica del Perú

1 Introduction

Typically, the volatility of financial time series exhibits long-term dependence or long memory.
This property is represented in the domain of time by the behavior of its autocorrelation function
(ACF), which presents significantly different values from zero up to a large number of lags, indicating
hyperbolic decay. In the domain of frequencies, a higher weight of the low frequencies in the spectral
density is observed, as is a rapid growth in this function as the frequencies approach the origin.
Several authors document this characteristic; see Taylor (1986), Ding et al. (1993), Dacorogna et al.
(1993), Robinson (1994), among others. There are several possible formalizations for this definition;
see McLeod and Hipel (1978), Beran (1994), Robinson (1994), and Baille (1996), among others. I
follow the definitions presented in Perron and Qu (2010). Let {xt}Tt=1 be a stationary time series
with spectral density function fx(ω) at frequency ω, so xt has long memory if fx(ω) = g(ω)ω−2d,
for ω → 0, where g(ω) is a function of smooth variation in a vicinity of the origin, which means that
for all real numbers t, it is verified that g(tω)/g(ω) → 1 for ω → 0. The spectral density function
increases for frequencies increasingly close to the origin, depending on the value of the parameter
d. The divergent infinite rate depends on the value of the parameter d. On the other hand, let
γx(τ) be the ACF of xt, so xt has long memory if γx(τ) = c(τ)τ2d−1, for τ → ∞, where c(τ) is a
function of smooth variation. When 0 < d < 1/2 the ACF decays at a slow rate that depends on
the value of parameter d3. Another way to formalize the concepts is to say that xt ∼ I(d), where
xt = (1 − L)det with et = C(L)εt, εt ∼ i.i.d. (0, σ2ε ) and E|εt|r < ∞ for some r > 2 to be a short
memory process with lag polynomial C(L) =

∑∞
i=0 ciL

i satisfying
∑∞

i=0 i|ci| <∞ and C(1) 6= 0.
Granger and Joyeux (1980) and Hosking (1981) introduced the ARFIMA(p,d,q) model as a

parametric way of capturing long memory dynamics. There is also literature on semiparametric
estimators of the fractional parameter d where the most used estimators are the method of Geweke
and Porter-Hudak (1983) using the log-periodogram; see also Robinson (1995a). In addition, there
is the local Whittle estimator of Kunsch (1987) and Robinson (1995b); see also Andersen et al.
(2003). Another way to capture the long-memory behavior is by mixing it with GARCH effects, as
in the Fractional Integrated GARCH (FIGARCH) model proposed by Baillie et al. (1996).

1This document has been produced during the period earned as Researcher Professor 2015-2016. I thank excellent
research assistance of Junior A. Ojeda Cunya and also support from the Department of Economics, Pontificia Universi-
dad Católica del Perú. We thank useful comments of Paul Castillo (Central Bank of Peru), Rodolfo Cermeño (CIDE),
Jiawen Xu (Shangai University of Finance and Economics), Zhongjun Qu and Pierre Perron (Boston University),
Jorge Rojas and Patricia Lengua Lafosse (PUCP). Useful comments from the participants of the XXXIII Meeting of
the Economists of the Central Bank of Peru (Lima, October 27-28, 2015) are acknowledged. Any remaining errors
are my responsibility.

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Pontificia Universidad Católica
del Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), E-Mail Address:
gabriel.rodriguez@pucp.edu.pe.

3These definitions in the domain of frequency and time are equivalent if certain general conditions are verified, in
accordance with the findings in Beran (1994).
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Recently, the literature has focused increasingly on the possibility of long memory behavior being
confused with a short memory process contaminated by level shifts4. Important and interesting
references in respect of this are Lobato and Savin (1998), Diebold and Inoue (2001), Granger and
Hyung (2004), and Perron and Qu (2007, 2010), among others. For instance, Diebold and Inoue
(2001) argue that long memory and structural changes are related through the following models:
the simple mixture permanent stochastic breaks model of Engle and Smith (1999) and the Markov-
Switching model of Hamilton (1989). The authors show analytically that stochastic regime shifts are
easily confused with long memory, even asymptotically, provided that the probabilities of structural
breaks are small. The Monte Carlo simulations attest to the relevance of the finite samples theory,
and make it clear that confusion is not only a theoretical matter, but a real possibility in empirical
economic and financial applications. Granger and Hyung (2004), for their part, show that the
slow decay in the ACF and other properties of the fractionally integrated models are caused by
occasional breaks. Analytically, the authors show that not taking the breaks into consideration
causes the presence of long memory in the ACF and that the fractional parameter estimated using
the method of Geweke and Porter-Hudak (1983) is biased.

Other references are Teverovsky and Taqqu (1997). Using the daily returns of the Center for
Research in Security Prices (CRSP) for the period 1962-1987, they present a method for distin-
guishing between the effects of level shifts and the effects of long memory. Gourieroux and Jasiak
(2001) evaluate the relationship between the presence of infrequent breaks and long memory based
on the correlogram estimation instead of estimating the fractional parameter. The authors find that
non-linear time series with infrequent breaks could have long memory. Therefore, these series and
not the fractionally integrated processes with i.i.d. innovations would cause the hyperbolic decay
of the ACF. Other references are Mikosch and Stărică (2004a, 2004b), and Stărică and Granger
(2005). The principal finding of this branch of the literature is that if a short memory process is
contaminated by level shifts, the time series will display many of the same properties as a genuine
long-memory process.

A recent study on the analysis of long memory and level shifts, or structural shifts, is that
of Perron and Qu (2010). The authors present a method of distinguishing between long memory
and level shifts using the ACF, the periodogram, and the estimates of the fractional integration
parameter d. Perron and Qu (2010) propose a simple mixture model that combines a short memory
process and a component that reflects the level shifts determined by an occurrence variable following
a Bernouilli process. Applying this method to the log-squared returns of four indices (S&P 500,
NASDAQ, AMEX and Dow Jones), they conclude that the model that best describes the volatility
of the returns is that which considers a short memory process with a random level shifts component
(denoted by RLS). Lu and Perron (2010), and Li and Perron (2013) use the RLS model to model
the volatility of stock market and exchange rate returns, respectively. For Latin American stock
and Forex markets we have studies such as Gonzáles Tanaka and Rodríguez (2016), Ojeda Cunya
and Rodríguez (2016), Pardo Figueroa and Rodríguez (2014), Rodríguez (2016), and Rodríguez
and Tramontana Tocto (2015).

Other attempts to mix both RLS and short memory dynamics are Chen and Tiao (1990), and
McCulloch and Tsay (1993), all of whom reach the conclusion that the long-memory properties of
the data are spurious. Similar conclusions have been reached by another branch of the literature

4This distinction is an important methodological aspect to discern. Impacts of shocks on volatility are transitory or
long-term if it is shown that volatility is a short memory or long memory process, respectively. This has consequences
for practical or empirical terms. For instance, the impact of different measures of the Central Bank or the agents in
the stock market is different depending on the behavior of volatility.
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dealing with semiparametric estimation of the fractional parameter in the presence of structural
breaks; see Smith (2005), McCloskey and Hill (2013), and McCloskey and Perron (2013). A draw-
back of this approach is that level shifts are not identified, making it unsuitable for forecasting5.

From the above-mentioned results it is clear that the presence of level shifts may cause spurious
detection of genuine long memory behavior, and consequently result in a misspecification. However,
some of the literature argues the reverse; that is, that genuine long memory behavior may also
cause spurious detection of random level shifts. This issue is proposed by Nunes et al. (1995), and
Granger and Hyung (2004). A solution to this dual problem has been advocated by Varneskov
and Perron (2014), who propose a parametric model that allows for both random level shifts and
long memory; that is, by modelling the latent volatility process as a combination of a random level
shifts component and ARFIMA dynamics (denoted as the RLS-ARFIMA (p,d,q) model). This
approach is close to that of Ray and Tsay (2002) in that both model structural changes in the
presence of genuine long memory. However, these studies are otherwise markedly different. Ray
and Tsay (2002) use a Markov-Switching approach while Varneskov and Perron (2014) use the RLS
methodology. This fundamental change allows for the fact that level changes are random; that is,
at any time t a level shift can occur regardless of whether this occurred at time t− 1. This allows
level shifts to be independent of past observations. Further, the state-space model of Varneskov
and Perron (2014) nests a RLS model with the short memory ARMA dynamics of Lu and Perron
(2013). The estimation procedure is similar to the one used in Lu and Perron (2010) with significant
changes and adequacy due to the presence of ARFIMA dynamics. The base of the procedure is
taken from Wada and Perron (2006), and Perron and Wada (2009).

I apply the RLS-ARFIMA(0,d,0) and RLS-ARFIMA (1,d,1) models to the daily stock and Forex
markets returns volatility of Argentina, Brazil, Chile, Mexico, and Peru. The full sample parameters
estimates show that level shifts are rare but present in all series. I compare the results with four
RLS models, as in Xu and Perron (2014), Rodríguez (2016), and Gonzáles Tanaka and Rodríguez
(2016). The results suggest that estimates of the fractional parameter using daily data are very
small. These results are in accordance with Varneskov and Perron (2014). They find that estimates
of the fractional parameter for high frequency data are higher, around 0.40. However, estimates
of this parameter using daily frequency data are smaller and in many cases close to zero. Our
estimates using daily data suggest the same observation. Therefore, Varneskov and Perron (2014)
suggest that residual dynamics extracted using daily data may be characterized as a combination
of short memory dynamics and measurement errors. Given the small values of the estimates of the
fractional parameter, I argue that the daily volatility series I am using are better modeled as a short
memory process contaminated by rare level shifts, and only in a some cases is there genuine long
memory. In this regard my results corroborate the findings in similar markets of Rodríguez and
Tramontana Tocto (2015), Gonzáles Tanaka and Rodríguez (2016), Ojeda Cunya and Rodríguez
(2016), and Rodríguez (2016). An out-of-sample forecasting comparison is also performed using
the approach of Hansen et al. (2011). The RLS-ARFIMA models is seen to perform better for
some horizons while the other four RLS models are better for others. This is a logical consequence
of the small magnitude of the estimates of the fractional parameter in the RLS-ARFIMA models.
In no forecasting horizon are simple ARFIMA (p,d,q) selected, and nor do they belong to the 10%
of the MCS of Hansen et al. (2011).

5Still more similar conclusions are obtained from the branch of the literature that focuses on testing for spurious
long memory against the alternative of a short-memory process contaminated by level shifts; see Ohanissian et al.
(2008), Perron and Qu (2010) and Qu (2011). See also an empirical application to Latin American stock markets in
Pardo and Rodríguez (2014).
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This study is structured as follows. Section 2 briefly describes the RLS-ARFIMA model, other
RLS models, and the estimation method. Section 3 deals with the results, with a description of
the data, estimations of parameters, and a forecasting exercise. Finally, Section 4 presents the
conclusions.

2 Methodology

In this Section, I briefly describe the RLS-ARFIMA (p,d,q) model proposed by Varneskov and
Perron (2014). Some details regarding the estimation method are established. Other RLS models
are also presented.

2.1 The RLS Model with a Long Memory Process

Using the notation of Varneskov and Perron (2014), the RLS-ARFIMA model is specified as:

yt = a+ τ t + ht, (1)

τ t = τ t−1 + δT,t,

δT,t = πtηt,

where the level shifts component τ t is a random walk with innovations δT,t that obey a mixture
of two Normally distributed processes according to δT,t = πT,tη1t + (1 − πT,t)η0t with ηjt ∼ i.i.d.
N(0, σ2ηj ) for j = 0, 1. The variable πt ∼ Bernoilli(γ/T ) for some γ ∈ [0, T ]. Furthermore, πt, ηt
and ht are mutually independent. The Bernoulli probability of the random level shift process is
dependent on the sample size, T , to make the expected number of level shifts constant for a given
series. This is needed to model structural changes in the mean (or rare events), which affect the
properties of the series until the next shift (event) occurs. Following Varneskov and Perron (2014),
I impose the restrictions σ2η1 = σ2η and σ

2
η0

= 0.
The long-memory component ht may be written as an AR(∞) process, ht =

∑∞
i=1 ψiht−i + εt

where
∑∞

i=1 ψiL
i = φ(L)

θ(L) (1−L)d. Since d ∈ [0, 1/2), the roots of φ(x) = 0 and θ(x) = 0 are outside
the unit circle, φ(L) and θ(L) do not to have common roots, and ht has a unique and stationary
solution6. The contribution of the fractional difference filter may be written as a binomial expansion
(1−L)d =

∑∞
i=0 πiL

i with πi = Γ(i−d)/Γ(i+1)Γ(−d) where Γ(.) is the Gamma function. Using this
representation, we may write ∆yt as an infinite dimensional difference process ∆yt = ht−ht−1+δT,t
for t = 2, ..., T . The basic principle behind the estimation procedure is to augment the probability
of states through the realizations of the mixture of normally distributed processes at time t, and
apply the Kalman filter to construct the likelihood function conditional on the realization of states.
Unfortunately, ∆yt does not have finite dimensional state-space representation unless d = 0 and p,
q <∞ which is an issue similarly faced by Chan and Palma (1998) and Beran (1995). Varneskov and
Perron (2014), following the literature, suggest approximating the AR(∞) process by an AR(M)
where M is chosen depending on the length of the modeled series7. Hence, the approximate state-
space representation of ∆yt in matrix form is ∆yt = FHt + δT,t, Ht = GHt−1 + Et where F =
[1,−1, 0, ....0], Ht = [ht, ht−1, ..., ht−M+1]

′, and Et = [εt, 0, ..., 0]′ areM×1 vectors where Et ∼ i.i.d.
N(0M×1, Q) and 0M×1 denotes aM×1 vector of zeros. Here, G and Q are bothM×M matrices of

6See Brockwell and Davis (1991).
7Further and specific details are in Varneskov and Perron (2014).
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parameters and identifying terms, G =

ΨM−1 ψM

IM−1 0(M−1)×1

 and Q =

 σ2ε 01×(M−1)

0(M−1)×1 0(M−1)×(M−1)

,
where ΨM = [ψ1, ψ2, ..., ψM ] is 1×M and IM is M dimensional identity matrix.

Let the available information up to time t be denoted by the vector Yt = [∆y1,∆y2, ....,∆yT ],
and let the parameter vector be denoted by Σ = [ση, p, σε, d, φ(L), θ(L)]. Then, we can ex-
press the conditional log-likelihood function as ln(L) =

∑T
t=1 ln f [∆yt|Yt−1; Σ], f [∆yt|Yt−1; Σ] =∑1

i=0

∑1
j=0 f [∆yt|st−1 = i, st = j, Yt−1; Σ]× Pr[st−1 = i, st = j; Σ] where st is an indicator for the

particular state at time t, which is independent of past realizations. If a level shift occurs πT,t = 1,
then st = 1, and similarly st = 0 if a level shift does not occur, πT,t = 08. The two possible states
cause the number of estimates for the state vector and its conditional variance to grow exponen-
tially over time with a factor of t2. A solution to this, suggested in Harrison and Stevens (1976), is
to re-collapse H ij

t|t and P
ij
t|t to ensure they are unaffected by the history of states before time t− 1.

By increasing the estimation complexity relative to Markov regime-switching models, we gain the
modeling flexibility of allowing for shifts of unknown timing, frequency and magnitude.

The added challenge relative to the long-memory state-space framework of Chan and Palma
(1998) arises from the shift-dependent error in the measurement equation, whereas relative to Lu
and Perron (2010) it is the presence of (1 − L)d/θ(L) in the representation of ht potentially with
d ∈ [0, 1/2) - such that no finite state space representation exists - that causes additional diffi culties.
The modeling strategy is similar to the approach suggested by Ray and Tsay (2002). However,
Varneskov and Perron (2014) introduce an estimation methodology that augments the Bayesian
approach in Ray and Tsay (2002) in three different directions, by allowing for a short memory
ARMA process, by allowing level shifts to occur at each time t, and not in blocks, and finally,
extending their analysis by providing a forecasting framework. The methodology is able to capture
short-term changes in mean as well as rare shifts, and it can be used for out-of-sample forecasting.
This specification also has the advantage of making level shifts random events that do not depend
on past realizations of the data.

2.2 Other RLS Models

The DGP in (1) nests all other types of RLS, ARMA and ARFIMA models with simple variations
of the parameters d, γ/T or ση. For instance, if we let d = 0, we retrieve the basic RLS model
proposed by Lu and Perron (2010) where the short memory component is modeled as an ARMA
(0,0) model with γ/T = α. On the other hand, if γ = 0 or ση = 0 we retrieve the ARFIMA model.
In the case of the basic RLS model, as the probability of level shifts is constant (γ/T = α), we
can retrieve the dates of these level shifts using the approach of Bai and Perron (2003). In this
method, the number and dates of breaks are selected by minimizing the squared sum of residuals:
m+1∑
i=1

Ti∑
t=Ti−1+1

[yt − µi]2, where m is the number of breaks, Ti (i = 1, 2, ...;m) are the dates of the

breaks with T0 = 0, and Tm+1 = T and µi (i = 1, 2, ...,m + 1) are the means (averages) inside
each regime. This method is effi cient and can manage a long number of observations; see Bai and

8As such, the likelihood function resembles its counterpart for Markov regime switching models -see e.g. Hamilton
(1994a)- but it has two more complexities. First, the mean and the variance of the conditional density are nonlinear
functions of the past realizations and the fundamental parameters. Hence, we cannot separate all elements and apply
a standard EM algorithm. Second, the conditional probability of being in a given regime is not separable from the
conditional density.
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Perron (2003) for further details9.
There are three extensions to the basic RLS model, according to Xu and Perron (2014). In

the first extension, constant probabilities of level shifts are changed by time-varying probabilities,
depending on past extreme returns based on different threshold levels. The level shifts usually
occur in clusters in certain periods of time related to financial crisis. This phenomenon of clus-
tering indicates that level shifts are not i.i.d., but that the probability of these shifts varies in
accordance with economic, political, and social conditions in the countries. Following on from the
notation used in Xu and Perron (2014), the probability of level shift is defined as pt = f(p, xt−1),
where p is a constant and xt−1 are the covariates that help to better predict the probability of
level shifts. According to the study by Martens et al. (2004), there is a strong relationship be-
tween current volatility and past returns, also known as the leverage effect. This effect has been
modeled through the news impact curve proposed by Engle and Ng (1993). In the current frame-
work it is expressed as log(σ2t ) = β0 + β11(rt−1 < 0) + β2|rt−1|1(rt−1 < 0), where σ2t represents
the volatility and 1(A) is the indicator function that takes the value of one when the event A
occurs. In the current case, the variable xt−1 is represented by extreme past returns that are
below a threshold κ%. Therefore, I employ the returns that belong to 1%, 2.5% and 5% of the
distribution of the returns (κ = 1.0%, 2.5%, 5.0%). Thus, the probability of level shifts is given by

f(p, xt−1) =

 Φ(p+ γ11 {xt−1 < 0}+ γ21 {xt−1 < 0} |xt−1|) for |xt−1| > κ

Φ(p) other cases,

, where Φ(.) is the

Normal accumulated distribution, with which we ensure that f(p, xt−1) is between 0 and 1. This
model is denoted as the Threshold κ% RLS model.

The second extension of the basic RLS model is the introduction of a mean reversion mechanism
(with the constant probability of level shifts remaining). The level shifts occur around a mean; that
is, each time a level shift occurs and the volatility of the series increases, a similar change occurs
in the opposite direction, which makes the mean of the volatility remains at a given value. This
process of mean reversion is modeled as follows: η1t = β(τ t|t−1 − τ t) + η̃1t, where η̃1t is distributed
Normally with mean 0 and variance σ2η̃1 , τ t|t−1 is the estimated level shift component at time t,
and τ t is the mean of all level-shift components estimated from the start of the sample to time t.
The process of mean reversion occurs when β < 0 and this parameter represents the velocity at
which the volatility returns to its mean. This model is denoted as the Mean Reversion RLS model.
The third extension is a combination of the above two modifications and is denoted as the Modified
RLS model.

The estimation method for the basic RLS model is proposed by Lu and Perron (2010) while
the three other RLS models are described in Xu and Perron (2014). All methods are based on the
approach of Wada and Perron (2006), as well as Perron and Wada (2009). The method is subject
to similar diffi culties as for the RLS-ARFIMA model. Further and specific details may be found in
Lu and Perron (2010), Li and Perron (2013), and Xu and Perron (2014).

2.3 Forecasting

The state space structure of the RLS-ARFIMA model allows τ -step-ahead forecasts to be obtained
by combining results from the state-space and Markov switching literature; see Hamilton (1994b),
and Gabriel and Martins (2004). This approach allows for progression beyond the Lu and Perron’s

9Note that since the model allows consecutive level changes, the minimum length of a segment is set to only one
observation.
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(2010) state-space level shift framework. The forecasting of the basic RLS model is embedded in
the framework of Varneskov and Perron (2014). The Proposition 2 in Varneskov and Perron (2014)
provides the elements to justify their approach; see Varneskov and Perron (2014) for specific details.

3 Empirical Results

Three issues are discussed in this Section: first, a brief description of the data used in the estima-
tions. Second, an analysis of the results obtained from the estimation of the RLS-ARFIMA models
and other competitors models. Third, an analysis of the forecasting performance of the RLS-
ARFIMA in comparison with the four other models in the family of RLS and standard ARFIMA
models.

3.1 The Data

I apply the above-mentioned models to two kinds of financial series: stock and Forex return volatil-
ities, using daily frequency and including five Latin American countries. In the case of the stock
market, we have Argentina, covering the period 08/04/1988 to 06/13/2013 (6142 observations);
Brazil, from 01/02/1992 to 06/13/2013 (5303 observations); Chile, from 01/02/1989 to 13/06/2013
(6096 observations); Mexico, from the 01/19/1994 to 13/06/2013 (4839 observations); and Peru,
from 01/03/1990 to 06/13/2013 (5831 observations). For the Forex series we have Argentina, from
02/01/2002 to 02/07/2014 (2958 observations); Brazil, from 04/01/1999 to 02/07/2014 (3785 obser-
vations); and Chile, Colombia, Mexico, and Peru, from 01/04/1993 (5282 observations), 08/20/1992
(5259 observations), 01/02/1992 (5636 observations, and 01/03/1997 (4251 observations), respec-
tively, all of which ended on 02/07/2014.

The returns are constructed as rt = ln(Pt) − ln(Pt−1), where Pt are the values of each of the
indexes or the exchange rates depending on the market analyzed. Following recent literature (see
Lu and Perron (2010), Li and Perron (2010), Xu and Perron (2010), among others), we model log-
absolute returns10. When returns are zero or close to it, the log-absolute transformation implies
extreme negative values. Using the estimation method described above, these outliers would be
attributed to the level shifts component and thus bias the probability of shifts upward. To avoid
this problem, I bound absolute returns away from zero by adding a small constant; that is, I
use yt = log(|rt| + 0.001), a technique introduced to the stochastic volatility literature by Fuller
(1996). The results are robust to alternative specifications; for example, using another value for
this so-called offset parameter, deleting zero observations, or replacing them with another small
value.

Another important comment is the fact that I use daily returns as opposed to realized volatility
series constructed from intra-daily high-frequency data, which have become popular of late. It is
true that realized volatility series are less noisy measure of volatility, but their use in the current
context would be problematic for the following reasons: (i) these series are typically available for a
short span. Given the fact that the level shifts will be relatively rare, it is imperative to have a long

10This measure has two advantages: (i) it does not suffer from a non-negativity constraint as do, for example,
absolute or squared returns. In fact, it uses a similar argument to the EGARCH(1,1) model proposed by Nelson
(1991): the dependent variable is log(σ2t ) in order to avoid the problems of negativity when the dependent variable
is σ2t as in the standard GARCH models and other relative models; and (ii) there is no loss related to the use of
square returns in identifying level shifts since log-absolute returns are a monotonic transformation. It is true that
log-absolute returns are quite noisy but this is not problematic since the algorithm used is robust to the presence of
noise.
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span of data in order to make reliable estimates of the probability of level-shift occurrence; and
(ii) they are available only for specific assets as opposed to market indices. Because the aim of the
RLS model is to allow for particular events affecting overall markets, using a specific asset would
confound such market-wide events with idiosyncratic ones associated with the particular asset used.

Table 1 shows the main descriptive statistics of returns and volatility of the series in both
markets. Figures 1a and 1b show the behavior of the returns. We can see that these series move
very close to zero mean and have clusters or groupings in their distribution in time. These clusters
in the series support the use of model-level changes combined with a long-memory process, because
they are the representation of shocks that have long-term effects within each regime. On the other
hand, volatility asymmetry is very small and is in the range of -0.259 and -0.027. The kurtosis in all
series is very close to 3 (2.578-2.827) but without presenting a Normal distribution. Further details
on the stylized facts in the stock and Forex markets in Peru may be found in Humala and Rodríguez
(2013). The ACF of the volatility series are presented in Figures 2a and 2b. The long memory
behavior can be clearly appreciated for all the series, but the evidence appears to be stronger for
the case of the Forex markets.

3.2 Results

The parameters estimated using the RLS-ARFIMA (0,d,0) and the RLS-ARFIMA (1,d,1) models
are presented in Table 2a and 2b for the Stock and Forex markets, respectively. In addition, by
way of comparison, I add the estimates of the Basic RLS, ARFIMA (0,d,0) and ARFIMA (1,d,1)
models. In order to save space, I do not include estimates for the other three RLS models, but the
results are similar and are available upon request.

With respect to Table 2a, the following observations are obtained: (i) estimates of the fractional
parameter from the ARFIMA models are high, especially in the case of the ARFIMA (1,d,1) model.
This characteristic is observed in all five countries analyzed. In some cases, such as Argentina
and Mexico, the estimates of the fractional parameter are higher than 0.41; that is, they are
relatively close to the nonstationarity border (0.5); (ii) in all cases, the estimates of the fractional
parameter are statistically significant at 1.0%. This is consistent with what was observed in Figure
2a, which shows that the volatility series exhibit long-memory behavior; that is, shocks that affect
the volatility of returns do not disappear in the short term; (iii) the phenomenon changes when the
RLS-ARFIMA models are estimated. In general, all estimates of fractional parameters reduce in
magnitude very significantly. In some cases, such as Brazil and Peru, the estimates of the fractional
parameter are zero, while in many cases the significance is reduced at 10.0% of significance; and
(iv) comparing with the basic RLS model, the estimates of ση are found to be higher in the cases of
the RLS-ARFIMA models. This is particularly clear in the cases of Argentina and Peru. However,
in the case of Chile the opposite result can be observed. In the other countries, the estimates of ση
are similar or relatively high in relation to the basic RLS model, indicating the importance of the
level shift component. It is only in the case of Chile that the result indicates greater importance
of the short-memory process as compared to the level shifts component.

In conclusion, estimates from the RLS-ARFIMA models suggest a different outcome. When
there is a significant estimate of the fractional parameter, it is small. Therefore, according to these
models, there is genuine long memory but its magnitude is reduced.

The same is true of Table 2b where the results correspond to the Forex markets. For Argentina,
the estimate of the fractional parameter is found to be extremely high (0.981) in the case of the
ARFIMA (1,d,1) model. Chile and Mexico are cases where the estimates are close to the nonsta-
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tionarity borderline. However, estimates obtained from the RLS-ARFIMA models give different
results: the fractional parameter is small.

Figures 3a and 3b show the ACF of the residuals extracted from the volatility series minus the
level shifts component when a RLS-ARFIMA (0,d,0) and RLS-ARFIMA (1,d,1) are used in the
stock markets, respectively. The same information appears in Figures 4a and 4b but in relation to
the Forex markets. The same conclusion may be obtained from all four figures: no evidence of long
memory behavior is found. The differences are extremely clear in comparison with Figures 2a and
2b.

In summary, the results suggest that estimates of the fractional parameter using daily data are
very small or in some cases, not statistically signifcant. These results are in accordance with Var-
neskov and Perron (2014). They find that estimates of the fractional parameter for high frequency
data are higher, around 0.40. However, estimates of this parameter using daily frequency data are
smaller and in many cases close to zero. My estimates using daily data result in the same obser-
vation. Therefore, Varneskov and Perron (2014) suggest that residual dynamics extracted using
daily data may be characterized as a combination of short memory dynamics and measurement
errors. Given the small values of the estimates of the fractional parameter, I argue that the daily
volatility series employed here are better modeled as a short memory process contaminated by rare
level shifts, and that only in some cases is there genuine long memory. In this regard my results
corroborate the findings from similar markets of Rodríguez and Tramontana Tocto (2015), Gonzáles
Tanaka and Rodríguez (2016), Ojeda Cunya and Rodríguez (2016), and Rodríguez (2016).

3.3 Forecasting

I consider out-of-sample forecasting of the last Tout = 1800 days of all samples. The parameters are
estimated once, without the last 1800 days, and the forecast calculation is conditional to these esti-
mates11. I consider direct τ -step-ahead forecasting for six different horizons τ = 1, 5, 10, 20, 50, 100.
Let the cumulative direct τ -step-ahead forecast be defined as yt+τ ,i|t =

∑τ
s=1 ŷt+s,i|t for model

i ∈ M0 where M0 is the initial, finite set of models, and similarly let the cumulative volatility
proxy be denoted as σ2t,τ =

∑τ
s=1 yt+s. For out-of-sample evaluation, I use the mean square fore-

cast error (MSFE) criterion, defined as MSFEτ ,i = 1
Tout

∑Tout
t=1 (σ2t,τ − yt+τ ,i|t)2, which is shown in

Hansen and Lunde (2006) and Patton (2011) to be robust to noise in the volatility proxy12.
To facilitate model comparison, Varneskov and Perron (2014) define the relative performance

of models i, j ∈ M0 at time t as dij,t = (σ2t,τ − yt+τ ,i|t)2 − (σ2t,τ − yt+τ ,j|t)2. Then, it is assumed
that dij,t satisfies the following conditions: for some r > 2 and γ > 0, it holds that E|dij,t|r+γ <∞,
∀i, j ∈ M0 and that {dij,t}i,j∈M 0 are strictly stationary with var(dij,t) > 0 and α-mixing of order
−r/(r − 2). Under the above conditions on {dij,t}, the relative forecast accuracy may be assessed
using the 10% Model Confidence Set (MCS) of Hansen et al. (2011)13. It is important for our
application that the MCS is based on a bootstrap implementation, which is robust to comparing
nested models when the parameters are estimated once using the same in-sample estimation period
for all models; see for example the discussions in Giacomini and White (2006), and Hansen et al.
(2011). In terms of notation, I use a letter (a) when the model is the best in forecasting performance
11This approach is taken due to the heavy calculation task of re-estimating parameters in each step. For robustness,

both recursive and rolling window estimation have been used on the series. The numerical results were similar, and
the model rankings were identical. This is explained by the fact that the parameter estimates are robust to the choice
of the estimation window.
12The results were qualitatively the same using the mean absolute forecast errors.
13See Appendix A.2 of this reference for a review.
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(which means a p-value=1.000). I also use a letter (b) when the model corresponds to the 10%
MCS of Hansen et al. (2011).

Eight models have been estimated in order to compare their forecasting performance: the Basic
RLS, the Threshold 1% RLS, the Mean Reversion RLS, the Modified RLS, the RLS-ARFIMA
(0,d,0), the RLS-ARFIMA (1,d,1), the ARFIMA (0,d,0) and the ARFIMA (1,d,1). Table 3a
presents results for the stock markets while the Table 3b shows the results for the Forex mar-
kets. Let me to consider the result in Table 3a. In the case of Argentina the RLS-ARFIMA(0,d,0)
shows the best performance for τ = 1. After it, for τ = 5, 10, 20, the best model is the Mean
Reversion RLS model. For τ = 50, 100, the RLS-ARFIMA(1,d,1) is the best model. In no case are
the simple or typical ARFIMA (p,d,q) models the best, or do they correspond to the 10% MCS of
Hansen et al. (2011). Other models corresponding to the 10% MCS are any variations or members
of the RLS model family.

In the case of Brazil, a similar observation is obtained. For τ = 1 the RLS-ARFIMA(0,d,0) is
the best model selected. In the cases of τ = 5, 10, 20, the Basic RLS models are selected as the
best. Finally, as in the case of Argentina for τ = 50, 100 the RLS-ARFIMA(1,d,1) exhibits the best
performance. Again, no standard ARFIMA models are included within the 10% MCS.

In Chile, we find some variations in the selection of the best models. For τ = 1 the Basic
RLS model has the best performance. In the horizons τ = 5, 10, the Modified RLS model is
preferred. For τ = 20, the Mean Reversion RLS model is selected. Finally, for τ = 50, 100, the
RLS-ARFIMA(0,d,0) performs best. In the case of that country, the standard ARFIMA models
are selected as corresponding to the 10% MCS (p-values around 0.21 and 0.363) jointly with other
RLS models.

The case of Mexico is the only one where no RLS-ARFIMA model is selected as the best or as
corresponding to the 10% MCS. In fact, for τ = 1 the Basic RLS model is selected. For τ = 5, 10, 20
the Mean Reversion RLS model is preferred. For τ = 50 and τ = 100 the selected models are the
Modified RLS models and the Threshold 1% RLS model, respectively. In this country no standard
ARFIMA models correspond to the 10% of the MCS. The same aspect is observed for the RLS-
ARFIMA models. This is explained by the fact that for this country, the estimate of the fractional
parameter is not significant for the RLS-ARFIMA(1,d,1) while the d̂ is too short for the RLS-
ARFIMA(0,d,0). In consequence, the contribution and performance of the RLS-ARFIMA models
is limited or absent.

In the case of Peru, the preferred model is the Mean Reversion RLS model for τ = 1, 5. The
Modified RLS model is selected as the best model for τ = 10, 20. For τ = 50, 100 the RLS-
ARFIMA(0,d,0) is the model with the best forecasting performance. In this case, no ARFIMA
models corresponds to the 10% MCS. Interestingly, no RLS-ARFIMA (1,d,1) is selected in the 10%
of the MCS either, as in the case of Mexico. And as with Mexico, this can be explained. It should
be recalled that the estimate of d in the RLS-ARFIMA(1,d,1) was zero or statistically insignificant
(see Table 2a). However, for the RLS-ARFIMA(0,d,0) we obtained d̂ = 0.155, which is significant
at 1.0%. This is why the RLS-ARFIMA(0,d,0) is present in the good performance for Peru but it is
absent in Mexico, because we obtained no significance of the estimate of d̂ for both RLS-ARFIMA
models.

The results can be summarized through the following observations: (i) it is interesting that for
Chile, Mexico, and Peru (unlike Argentina and Brazil) the best forecasting performance is given
by the Basic RLS model or other models and not RLS-ARFIMA models. This is consistent with
or explained by the fact that in these three countries the short-memory component is successfully
modeled using an AR(1) process; see Rodríguez (2016); (ii) Mexico is the only country where
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no RLS-ARFIMA model is selected as the preferred model, and, indeed, where none of these
models correspond to the 10% MCS. Estimates of the fractional parameter d support these results.
However, no standard ARFIMAmodels perform better. The other RLS models are the best in terms
of forecasting; (iii) for long horizons, the RLS-ARFIMA(1,d,1) model is the best for Argentina and
Brazil; (iv) for short horizons, the RLS-ARFIMA(0,d,0) performs well for Argentina and Brazil.
For Mexico and Chile, the Basic RLS model is preferred, and for Peru the Mean Reversion RLS
model is selected; (v) in comparison with previous results, such as Rodríguez (2016), some countries
modeled as AR(1) processes show no evidence of ARFIMA behavior.

The five countries and six horizons used here would imply that we have 30 cases to consider for
each model. With respect to the RLS-ARFIMA (0,d,0), it is found to correspond to the 10% MCS
in 12 out of the 30 cases. As regards the RLS-ARFIMA (1,d,1), this is true in 12 of 30 cases. The
Mean Reversion RLS model appears in 16 of 30 cases. The Basic RLS occurs in seven of 30 cases.
In the cases of Chile, Mexico, and Peru, the best models are more clearly selected. In other words,
not many models are found to belong to the 10% MCS.

Very similar observations result from Table 3b, which shows the forecasting comparison in the
Forex markets: (i) the ARFIMA models are never selected, except for in one single case out of
all possible ones; namely, Brazil for τ = 100; (ii) the RLS-ARFIMA (0,d,0) is found in 14 of the
30 possible cases. The RLS-ARFIMA (1,d,1) appears in 14 of 30 cases; (iii) if the best model
of all (p-value=1.000) is to be selected, then the RLS family of models performs very well. The
dominance of the RLS-ARFIMA models is not observed. But other RLS models appear to perform
very well or to dominate the RLS-ARFIMA models in some cases and vice versa. For instance, in
the case of the Forex market of Argentina, the RLS-ARFIMA (1,d,1) is the best model for τ = 1.
No other model is seen to correspond to the 10% MCS. For τ = 5, the Mean Reversion RLS models
are the best selected, followed by the Basic RLS, Modified RLS, Threshold RLS, and the two RLS-
ARFIMA models. A similar observation is made for τ = 10. For other horizons the Mean reversion
RLS model appears to dominate, though this changes depending on the country analyzed. The
conclusion is that the family of RLS models in all their versions dominates the simple ARFIMA
models.

In summary, the RLS-ARFIMA models exhibits a better performance for some horizons, while
the other four RLS models are better for other horizons. This is a logical consequence of the small
magnitude of the estimates of the fractional parameter in the RLS-ARFIMA models. In no horizon
of forecasting are simple ARFIMA models selected or do they belong to the 10% MCS of Hansen
et al. (2011).

4 Conclusions

Following Varneskov and Perron (2014), I apply the RLS-ARFIMA(0,d,0) and RLS-ARFIMA
(1,d,1) models to the daily stock and Forex market returns volatility of Argentina, Brazil, Chile,
Mexico, and Peru. This model is a parametric state-space model with an estimation framework
that combines long memory and level shifts by decomposing the underlying process into a simple
mixture model with ARFIMA dynamics.

The full sample parameter estimates show that level shifts are rare but present in all series.
I compare the results with four RLS models as in Xu and Perron (2014). The results suggest
that estimates of the fractional parameter using daily data are very small. These results are in
accordance with Varneskov and Perron (2014). They find that estimates of the fractional parameter
for high frequency data are higher, around 0.40. However, estimates of this parameter using daily
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frequency data are smaller and in many cases close to zero. My estimates using daily data suggest
a similar observation. Therefore, Varneskov and Perron (2014) suggest that residual dynamics
extracted using daily data may be characterized as a combination of short memory dynamics and
measurement errors. Given the small values of the estimates of the fractional parameter, I argue
that the daily volatility series used here are better modeled as a short-memory process contaminated
by rare level shifts, with genuine long memory in some cases. In this regard, my results corroborate
the findings in similar markets of Rodríguez and Tramontana Tocto (2015), Gonzáles Tanaka and
Rodríguez (2016), Ojeda Cunya and Rodríguez (2016), and Rodríguez (2016).

An out-of-sample forecasting comparison is also performed using the approach of Hansen et
al. (2011). The RLS-ARFIMA models perform better for some horizons while the other four RLS
models are better for others. This is a logical consequence of the small magnitude of the estimates
of the fractional parameter in the RLS-ARFIMA models. In no horizon of forecasting are simple
ARFIMA models selected, or do they belong to the 10% MCS of Hansen et al. (2011).
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Table 1. Summary Descriptive Statistics of Returns and Volatility Series

Mean SD Maximum Minimum Skewness Kurtosis Sample

Stock Market Returns

Argentina 0.002 0.032 0.330 -0.757 -0.862 62.476 6142

Brazil 0.002 0.028 0.345 -0.395 -0.039 30.609 5303

Chile 0.001 0.012 0.118 -0.077 0.182 8.696 6096

Mexico 0.001 0.016 0.122 -0.143 -0.019 9.595 4839

Peru 0.001 0.017 0.143 -0.132 0.519 11.094 5831

Stock Market Volatility

Argentina -4.397 1.060 -0.277 -6.908 -0.235 2.808 6142

Brazil -4.383 0.975 -0.927 -6.908 -0.259 2.827 5303

Chile -4.993 0.845 -2.128 -6.908 -0.151 2.538 6096

Mexico -4.797 0.895 -1.937 -6.908 -0.161 2.604 4839

Peru -4.858 0.951 -1.931 -6.907 -0.027 2.622 5831

Forex Market Returns

Argentina 0.000 0.008 0.221 -0.070 9.962 283.372 2957

Brazil 0.000 0.011 0.100 -0.103 0.332 14.113 3784

Chile 0.000 0.006 0.047 -0.035 0.394 8.988 5281

Mexico 0.000 0.009 0.186 -0.168 1.495 97.508 5635

Peru 0.000 0.003 0.023 -0.019 0.451 14.330 4250

Forex Market Volatility

Argentina -6.026 0.739 -1.503 -6.908 1.473 5.838 2957

Brazil -5.145 0.857 -2.259 -6.908 0.065 2.569 3784

Chile -5.616 0.736 -3.044 -6.908 0.245 2.440 5281

Mexico -5.576 0.817 -1.679 -6.908 0.440 3.148 5635

Peru -6.148 0.597 -3.738 -6.908 0.940 3.524 4250
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Table 2a. Parameter Estimates: Stock Markets

a φ θ d ση α or γ/T σε AR(1)

Argentina

Basic RLS 0.679a 0.008c 0.937a

(0.189) (0.004) (0.009)

ARFIMA (0,d,0) -4.382a 0.178a

(0.054) (0.008)

ARFIMA (1,d,1) -4.493a 0.252a -0.620a 0.428a

(0.196) (0.031) (0.044) (0.035)

RLS_ARFIMA (0,d,0) 0.041a 0.875a 0.003a 0.945a

(0.014) (0.104) (0.001) (0.009)

RLS_ARFIMA (1,d,1) 0.228a 0.397a 0.203a 1.211a 0.001b 0.953a

(0.084) (0.097) (0.035) (0.186) (0.000) (0.009)

Brazil

Basic RLS 0.425a 0.010c 0.881a

(0.118) (0.006) (0.009)

ARFIMA (0,d,0) -4.351a 0.155a

(0.044) (0.008)

ARFIMA (1,d,1) -4.128a 0.174a -0.579a 0.409a

(0.159) (0.033) (0.048) (0.034)

RLS_ARFIMA (0,d,0) 0.000 0.425a 0.010c 0.881a

(0.000) (0.119) (0.006) (0.009)

RLS_ARFIMA (1,d,1) 0.104c 0.261a 0.121a 0.427a 0.008 0.883a

(0.061) (0.087) (0.042) (0.130) (0.005) (0.009)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 2a (continued). Parameter Estimates: Stock Markets

a φ θ d ση α or γ/T σe AR(1)

Chile

Basic RLS 0.612a 0.008c 0.778a 0.080a

(0.150) (0.004) (0.007) (0.014)

ARFIMA (0,d,0) -4.977a 0.181a

(0.045) (0.009)

ARFIMA (1,d,1) -4.907a 0.356a -0.565a 0.340a

(0.110) (0.048) (0.059) (0.033)

RLS_ARFIMA (0,d,0) 0.101a 0.074a 0.268b 0.786a

(0.014) (0.022) (0.136) (0.008)

RLS_ARFIMA (1,d,1) 0.371a 0.553a 0.307a 0.044 0.074 0.797a

(0.057) (0.067) (0.037) (0.047) (0.144) (0.007)

Mexico

Basic RLS 0.520a 0.006c 0.830a 0.025c

(0.157) (0.004) (0.009) (0.015)

ARFIMA (0,d,0) -4.792a 0.152a

(0.042) (0.009)

ARFIMA (1,d,1) -4.686a 0.338a -0.682a 0.412a

(0.145) (0.032) (0.039) (0.042)

RLS_ARFIMA (0,d,0) 0.027c 0.537a 0.005c 0.832a

(0.015) (0.150) (0.003) (0.009)

RLS_ARFIMA (1,d,1) 0.560a 0.635a 0.104 0.541a 0.005c 0.832a

(0.116) (0.128) (0.109) (0.154) (0.003) (0.009)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 2a (continued). Parameter Estimates: Stock Markets

a φ θ d ση α or γ/T σe AR(1)

Peru

RLS 0.875a 0.0045a 0.842a 0.115a

(0.128) (0.0016) (0.008) (0.015)

ARFIMA (0,d,0) -4.843a 0.222a

(0.069) (0.009)

ARFIMA (1,d,1) -4.886a 0.205b -0.378a 0.335a

(0.132) (0.089) (0.104) (0.028)

RLS_ARFIMA (0,d,0) 0.155a 1.859a 0.000b 0.853a

(0.012) (0.710) (0.000) (0.008)

RLS_ARFIMA (1,d,1) 0.761a 0.631a 0.000 1.373a 0.001b 0.850a

(0.050) (0.055) (0.000) (0.484) (0.000) (0.008)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 2b. Parameter Estimates: Forex Markets

a φ θ d ση α or γ/T σe AR(1)

Argentina

RLS 1.309a 0.015a 0.496a

(SD) (0.198) (0.003) (0.008)

ARFIMA (0,d,0) -5.792a 0.291a

(SD) (0.093) (0.011)

ARFIMA (1,d,1) 29.505 0.128a -0.920a 0.981a

(SD) (71.000) (0.037) (0.013) (0.039)

RLS_ARFIMA (0,d,0) 0.048c 1.420a 0.011a 0.504a

(SD) (0.025) (0.225) (0.003) (0.009)

RLS_ARFIMA (1,d,1) 0.985a 1.000a 0.066c 1.401a 0.012a 0.503a

(SD) (0.019) (0.002) (0.034) (0.230) (0.003) (0.009)

Brazil

RLS 0.535a 0.016b 0.745a

(SD) (0.120) (0.007) (0.009)

ARFIMA (0,d,0) -5.134a 0.201a

(SD) (0.061) (0.010)

ARFIMA (1,d,1) -5.033a 0.085 -0.401a 0.396a

(SD) (0.167) (0.065) (0.087) (0.036)

RLS_ARFIMA (0,d,0) 0.035c 0.432a 0.018c 0.750a

(SD) (0.019) (0.105) (0.010) (0.009)

RLS_ARFIMA (1,d,1) -0.0.73c 0.023 0.118a 0.421a 0.015c 0.754a

(SD) (0.041) (0.029) (0.031) (0.107) (0.009) (0.009)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 2b (continued). Parameter Estimates: Forex Markets

a φ θ d ση α or γ/T σe AR(1)

Chile

RLS 0.477a 0.009b 0.636a

(SD) (0.128) (0.004) (0.007)

ARFIMA (0,d,0) -5.653a 0.197a

(SD) (0.045) (0.008)

ARFIMA (1,d,1) -5.781a 0.279a -0.629a 0.437a

(SD) (0.139) (0.033) (0.045) (0.036)

RLS_ARFIMA (0,d,0) 0.045a 0.516a 0.005c 0.641a

(SD) (0.015) (0.153) (0.003) (0.007)

RLS_ARFIMA (1,d,1) 0.316c 0.399c 0.123c 0.517a 0.005c 0.642a

(SD) (0.167) (0.211) (0.066) (0.164) (0.003) (0.007)

Mexico

RLS 1.072a 0.003a 0.670a 0.071a

(SD) (0.072) (0.001) (0.007) (0.015)

ARFIMA (0,d,0) -5.655a 0.248a

(SD) (0.070) (0.008)

ARFIMA (1,d,1) -5.956a 0.244a -0.591a 0.491a

(SD) (0.224) (0.034) (0.047) (0.035)

RLS_ARFIMA (0,d,0) 0.088a 1.216a 0.002a 0.674a

(SD) (0.014) (0.240) (0.001) (0.007)

RLS_ARFIMA (1,d,1) 0.261 0.308 0.130a 1.238a 0.002a 0.675a

(SD) (0.210) (0.207) (0.042) (0.234) (0.001) (0.007)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 2b (continued). Parameter Estimates: Forex Markets

a φ θ d ση α or γ/T σe AR(1)

Peru

RLS 0.513a 0.017a 0.490a 0.104a

(SD) (0.084) (0.005) (0.006) (0.020)

ARFIMA (0,d,0) -6.120a 0.264a

(SD) (0.062) (0.010)

ARFIMA (1,d,1) -6.080a 0.276a -0.498a 0.420a

(SD) (0.133) (0.062) (0.076) (0.035)

RLS_ARFIMA (0,d,0) 0.145a 0.460a 0.009a 0.500a

(SD) (0.019) (0.112) (0.004) (0.006)

RLS_ARFIMA (1,d,1) 0.408b 0.499a 0.236a 0.444a 0.008b 0.502a

(SD) (0.160) (0.168) (0.018) (0.116) (0.003) (0.006)

Standard errors are reported in parentheses. Estimates with a,b,c are significant at the 1%, 5% or 10% level,

respectively.
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Table 3a. Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Stock Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Argentina

Basic RLS 0.753 4.728 12.475 37.205 209.381 860.698

(0.000) (0.091) (0.088) (0.164b) (0.001) (0.000)

Threshold 1% RLS 0.758 4.739 12.456 36.995 208.492 861.245

(0.000) (0.089) (0.088) (0.297b) (0.001) (0.000)

Mean Reversion RLS 0.750 4.668 12.204 35.878 198.130 804.210

(0.000) (1.000a,b) (1.000a,b) (1.000a,b) (0.022) (0.003)

Modified RLS 0.752 4.710 12.394 36.976 207.835 846.003

(0.000) (0.091) (0.088) (0.480b) (0.003) (0.000)

RLS-ARFIMA(0,d,0) 0.726 4.704 12.337 36.333 200.368 819.478

(1.000a,b) (0.361b) (0.341b) (0.878b) (0.007) (0.000)

RLS-ARFIMA(1,d,1) 0.758 4.914 12.664 35.945 182.388 723.798

(0.000) (0.003) (0.088) (0.953b) (1.000a,b) (1.000a,b)

ARFIMA(0,d,0) 0.991 8.634 26.376 86.607 455.305 1630.945

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.942 7.403 21.462 67.010 332.064 1139.459

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3a (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Stock Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Brazil

Basic RLS 0.691 3.915 10.044 31.052 175.247 773.826

(0.000) (1.000a,b) (1.000a,b) (0.342b) (0.000) (0.000)

Threshold 1% RLS 0.702 3.967 10.122 30.964 170.932 740.975

(0.000) (0.003) (0.178b) (0.621b) (0.005) (0.000)

Mean Reversion RLS 0.694 3.931 10.082 31.075 173.849 765.744

(0.000) (0.190b) (0.337b) (0.342b) (0.002) (0.000)

Modified RLS 0.702 3.960 10.813 30.901 170.627 740.144

(0.000) (0.007) (0.000) (0.827b) (0.018) (0.000)

RLS-ARFIMA(0,d,0) 0.691 3.915 10.044 31.051 175.232 773.728

(1.000a,b) (0.223b) (0.735b) (0.342b) (0.000) (0.000)

RLS-ARFIMA(1,d,1) 0.763 4.012 10.163 30.882 169.430 731.034

(0.000) (0.000) (0.157b) (1.000a,b) (1.000a,b) (1.000a,b)

ARFIMA(0,d,0) 0.925 8.368 26.763 92.738 498.011 1792.570

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.879 7.215 22.140 74.181 383.240 1341.148

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3a (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Stock Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Chile

Basic RLS 0.452 4.077 11.906 40.709 260.675 1002.936

(1.000a,b) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.452 4.078 11.907 40.709 260.569 1002.177

(0.005) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean Reversion RLS 0.470 3.868 10.993 36.616 230.168 901.681

(0.000) (0.218b) (0.339b) (1.000a,b) (0.011) (0.000)

Modified RLS 0.490 3.853 10.952 36.768 235.372 940.135

(0.00) (1.000a,b) (1.000a,b) (0.276b) (0.007) (0.000)

RLS-ARFIMA(0,d,0) 0.462 4.335 12.513 40.314 215.802 686.443

(0.000) (0.000) (0.000) (0.000) (1.000a,b) (1.000a,b)

RLS-ARFIMA(1,d,1) 0.456 4.244 12.327 40.754 235.514 808.098

(0.005) (0.000) (0.000) (0.000) (0.000) (0.002)

ARFIMA(0,d,0) 0.707 6.273 18.482 58.157 263.983 751.092

(0.000) (0.000) (0.000) (0.000) (0.000) (0.213b)

ARFIMA(1,d,1) 0.703 6.183 18.120 56.704 255.185 719.778

(0.000) (0.000) (0.000) (0.000) (0.018) (0.363b)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3a (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Stock Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Mexico

Basic RLS 0.570 4.073 11.897 40.191 231.507 886.526

(1.000a,b) (0.000) (0.000) (0.000) (0.000) (0.052)

Threshold 1% RLS 0.593 4.368 12.831 42.601 232.507 850.812

(0.000) (0.000) (0.000) (0.000) (0.000) (1.000a,b)

Mean Reversion RLS 0.602 3.653 10.301 35.287 220.786 928.209

(0.000) (1.000a,b) (1.000a,b) (1.000a,b) (0.217b) (0.002)

Modified RLS 0.620 3.843 10.884 36.655 217.713 869.037

(0.000) (0.000) (0.000) (0.001) (1.000a,b) (0.263b)

RLS-ARFIMA(0,d,0) 0.584 3.836 11.078 38.177 236.765 965.243

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

RLS-ARFIMA(1,d,1) 0.581 3.835 11.084 38.186 236.547 963.322

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(0,d,0) 0.788 7.066 22.669 77.332 392.473 1312.289

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.785 6.992 22.359 75.996 383.109 1272.077

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3a (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Stock Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Peru

Basic RLS 0.509 5.510 16.675 54.607 308.784 1148.305

(0.162b) (0.000) (0.000) (0.011) (0.006) (0.000)

Threshold 1% RLS 0.505 5.454 16.511 54.525 320.168 1219.345

(0.451b) (0.001) (0.000) (0.011) (0.001) (0.000)

Mean Reversion RLS 0.504 5.247 15.997 53.400 322.688 1247.681

(1.000a,b) (1.000a) (0.885b) (0.091) (0.002) (0.000)

Modified RLS 0.509 5.285 15.983 52.805 320.776 1248.114

(0.033) (0.147b) (1.000a,b) (1.000a,b) (0.003) (0.000)

RLS-ARFIMA(0,d,0) 0.517 5.989 18.350 58.061 276.216 908.350

(0.002) (0.000) (0.000) (0.011) (1.000a,b) (1.000a,b)

RLS-ARFIMA(1,d,1) 0.547 5.716 17.288 55.719 290.903 1017.086

(0.000) (0.000) (0.000) (0.011) (0.015) (0.000)

ARFIMA(0,d,0) 0.921 9.602 30.121 97.585 464.321 1511.350

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.932 9.877 31.224 102.056 493.114 1630.218

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3b. Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Forex Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Argentina

Basic RLS 0.145 1.362 3.125 8.429 61.963 118.029

(0.012) (0.825b) (1.000a,b) (0.004) (0.018) (0.000)

Threshold 1% RLS 0.120 1.473 4.030 7.242 62.242 114.337

(0.012) (0.577b) (0.177b) (0.280b) (0.000) (0.000)

Mean Reversion RLS 0.131 1.339 3.230 7.163 57.806 97.508

(0.014) (1.000a,b) (0.771b) (0.556b) (1.000a,b) (1.000a,b)

Modified RLS 0.122 1.430 3.672 7.092 63.492 109.518

(0.012) (0.577b) (0.177b) (1.000a,b) (0.000) (0.000)

RLS-ARFIMA(0,d,0) 0.104 1.482 4.356 7.162 62.135 113.666

(0.014) (0.577b) (0.177b) (0.451b) (0.000) (0.000)

RLS-ARFIMA(1,d,1) 0.102 1.480 4.353 7.123 62.279 113.265

(1.000a,b) (0.577b) (0.177b) (0.556b) (0.001) (0.000)

ARFIMA(0,d,0) 0.232 2.899 9.279 31.849 167.211 607.624

(0.004) (0.011) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 3.238 77.485 307.187 1197.914 7055.237 26250.370

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3b (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Forex Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Brazil

Basic RLS 0.507 3.912 10.846 36.467 250.632 1191.939

(0.000) (0.187b) (0.010) (0.000) (0.000) (0.021)

Threshold 1% RLS 0.492 3.858 10.813 36.469 253.275 1226.363

(0.000) (0.256b) (0.010) (0.000) (0.000) (0.001)

Mean Reversion RLS 0.493 3.778 10.400 34.551 222.385 1060.620

(0.000) (1.000a,b) (0.301b) (0.002) (0.007) (0.054)

Modified RLS 0.499 3.792 10.360 34.074 219.278 1038.370

(0.000) (0.303b) (1.000a,b) (1.000a,b) (1.000a,b) (0.054)

RLS-ARFIMA(0,d,0) 0.466 3.829 10.749 36.608 253.662 1206.028

(1.000a,b) (0.303b) (0.014) (0.000) (0.000) (0.015)

RLS-ARFIMA(1,d,1) 0.468 3.859 10.797 36.497 246.949 1137.718

(0.204b) (0.265b) (0.013) (0.000) (0.000) (0.037)

ARFIMA(0,d,0) 0.667 6.319 18.895 61.216 298.521 937.055

(0.000) (0.000) (0.000) (0.000) (0.000) (1.000a,b)

ARFIMA(1,d,1) 0.674 6.510 19.642 64.132 315.047 1006.433

(0.000) (0.000) (0.000) (0.000) (0.000) (0.054)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3b (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Forex Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Chile

Basic RLS 0.408 2.715 7.678 26.857 160.769 689.341

(0.000) (0.043) (0.041) (0.677b) (0.006) (0.000)

Threshold 1% RLS 0.393 2.634 7.397 26.221 163.373 691.651

(0.000) (1.000a,b) (1.000a,b) (0.906b) (0.031) (0.000)

Mean Reversion RLS 0.402 2.668 7.513 26.191 154.837 638.048

(0.000) (0.420b) (0.432b) (0.906b) (0.368b) (1.000a,b)

Modified RLS 0.400 2.657 7.472 26.155 155.744 641.944

(0.000) (0.423b) (0.441b) (1.000a,b) (0.205b) (0.209b)

RLS-ARFIMA(0,d,0) 0.378 2.708 7.681 26.478 154.643 662.363

(1.000a,b) (0.177b) (0.150b) (0.843b) (0.205b) (0.105b)

RLS-ARFIMA(1,d,1) 0.387 2.733 7.719 26.372 152.009 650.954

(0.000) (0.069) (0.066) (0.906b) (1.000a,b) (0.209b)

ARFIMA(0,d,0) 0.614 6.741 22.600 80.008 434.454 1595.243

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.594 6.251 20.640 72.153 384.979 1395.665

(0.000) (0.000) (0.000) (0.000) (0.018) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3b (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Forex Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Mexico

Basic RLS 0.299 2.715 8.258 28.893 197.425 992.964

(1.000a,b) (1.000a,b) (0.224b) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.342 2.867 8.255 27.352 183.932 900.678

(0.000) (0.015) (0.013) (0.020) (0.008) (0.130b)

Mean Reversion RLS 0.354 2.848 7.994 25.936 173.080 852.005

(0.000) (0.016) (1.000a,b) (1.000a,b) (1.000a,b) (0.945b)

Modified RLS 0.346 2.845 8.090 26.342 174.064 847.066

(0.000) (0.020) (0.394b) (0.379b) (0.689b) (1.000a,b)

RLS-ARFIMA(0,d,0) 0.370 2.935 8.255 26.839 177.629 853.895

(0.000) (0.010) (0.013) (0.022) (0.063) (0.916b)

RLS-ARFIMA(1,d,1) 0.340 2.929 8.362 27.321 178.656 848.270

(0.000) (0.014) (0.000) (0.004) (0.123b) (0.945b)

ARFIMA(0,d,0) 0.741 9.569 33.552 123.001 712.049 2679.897

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.722 9.091 31.640 115.342 663.589 2484.965

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Table 3b (continued). Forecast Evaluations (ŷt+τ |t = Et ln(|rt+τ |+ 0.001)): Forex Markets

τ = 1 τ = 5 τ = 10 τ = 20 τ = 50 τ = 100

Peru

Basic RLS 0.185 2.411 8.473 31.146 179.363 766.564

(0.062) (0.090) (0.141b) (0.000) (0.000) (0.000)

Threshold 1% RLS 0.203 2.547 9.197 34.789 204.453 870.528

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Mean Reversion RLS 0.224 2.344 8.050 29.699 167.649 702.526

(0.000) (1.000a,b) (0.798b) (0.000) (0.000) (0.000)

Modified RLS 0.214 2.441 8.780 33.834 196.975 830.357

(0.000) (0.019) (0.028) (0.000) (0.000) (0.000)

RLS-ARFIMA(0,d,0) 0.184 2.414 8.044 27.539 150.180 652.568

(1.000a,b) (0.110b) (0.710b) (0.000) (0.000) (0.000)

RLS-ARFIMA(1,d,1) 0.186 2.422 8.004 27.093 146.319 638.442

(0.000) (0.090) (1.000a,b) (1.000a,b) (1.000a,b) (1.000a,b)

ARFIMA(0,d,0) 0.397 5.034 16.498 54.349 273.831 953.812

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.398 5.062 16.609 54.823 277.155 969.622

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Threshold 1% RLS is the RLS Model with time-varying probabilities, mean reversion RLS is the RLS Model with

mean reversion and Modified RLS is the RLS model with time varying probability of shifts and mean reversion.
MSFEs are reported in the main entries; MCS p-values are in parentheses. An (a) indicates that the model is the

best according to the MSFE. A (b) indicates that the model is within the 10% MCS using all comparisons.
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Figure 1a. Daily Stock Returns
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Figure 2a. Sample ACFs of Volatility: Stock Markets
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Figure 2b. Sample ACFs of Volatility: Forex Markets
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Figure 3a. Sample ACFs of Residuals from RLS-ARFIMA (0,d,0) Model: Stock Markets
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Figure 3b. Sample Autocorrelations of Residuals from RLS-ARFIMA (1,d,1) Model: Stock Markets
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Figure 4a. Sample ACFs of Residuals from RLS-ARFIMA (0,d,0) Model: Forex Markets
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Figure 4b. Sample ACFs of Residuals from RLS-ARFIMA (1,d,1) Model: Forex Markets
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